
Supplementary Appendix

A Proofs

A.1 Proof of Theorem 1

In this proof, we use C and C
P

to denote Cit and C
P
it for notational simplicity.

A.1.1 Setup

Given that adjustment set C are defined to be pre-treatment (i.e., variables not affected by

the treatment), theoretical results on causal DAGs (Pearl, 1995; Shpitser et al., 2012) imply

that Yit(d) ⊥⊥ YNi,t−1 | C is equivalent to no unblocked back-door paths from YNi,t−1 to Yit

with respect to C in causal DAG G (see Lemma 1). Additionally, Yi,t−1 ⊥⊥ YNi,t−1 | C
P

is equivalent to no unblocked back-door paths from YNi,t−1 to Yi,t−1 with respect to C
P

in

causal DAG G.

The theorem requires one regularity condition – the violation of the no omitted confounders

assumption, if any, is proper. Intuitively, it means that bias (i.e., the violation of the no

omitted confounders assumption) is in fact driven by omitted variables. Bias is not proper

when the only source of bias is the misadjustment of the lag structure of observed covariates.

Importantly, contextual confounding and homophily bias are proper, and hence within the

scope of this theorem.

Definition 1 (Proper Bias)

Suppose adjustment set C does not satisfy Assumption 1. This violation (bias) is defined to be

proper when it satisfies the following condition: If control set Cit cannot block all back-door

paths from YNi,t−1 to Yit, there is at least one back-door path that any subset of the following

set cannot block.

{Cit,C
(−1)
it ,C

(+1)
it ,YNi,t−2},

where C
(−1)
it and C

(+1)
it are a lag and a lead of the time-dependent variables in Cit.

A.1.2 Bias → Dependence in Placebo Test

Here, we show that when set C cannot block all back-door paths from YNi,t−1 to Yit, set C
P

cannot block all back-door paths from YNi,t−1 to Yi,t−1.

Step 1 (Proper Bias): Given the assumption that the set C is proper, set C
P

cannot block

all back-door paths from YNi,t−1 to Yit because C
P

is a subset of {C,C(−1)
,C

(+1)
,YNi,t−2}.
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Step 2 (Set up the main unblocked back-door path to investigate): Let π be a back-

door path from YNi,t−1 to Yit that both C and C
P

and any subset of {C,C(−1)
,C

(+1)
,YNi,t−2}

cannot block. Without loss of generality, we assume that this unblocked back-door path starts

with an arrow pointing to Yk,t−1 where k ∈ Ni and it ends with an arrow pointing to Yit.

Step 3 (Case I. the last node of the unblocked back-door path is time-independent):

First, consider a case in which the last variable in an unblocked back-door path has a directed

arrow pointing to Yit and time-independent. Let (Z, Yit) denote the last two node path

segment on π where Z is a time-independent variable and there exists a directed arrow from

Z to Yit. Note that we do not put any individual index to Z because the proof holds for any

index. Since this is an unblocked path, Z is not in C
P

and there is an unblocked back-door

path from Yk,t−1 to Z. Since Z is time-independent, there is a directed arrow from Z to Yi,t−1

by the structural stationarity (Assumption 2). Therefore, set C
P

cannot block this back-door

path from Yk,t−1 to Yi,t−1.

Step 4 (Case II. the last node of the unblocked back-door path is time-dependent):

Next, consider the case in which the last variable in an unblocked back-door path points to

Yit and time-dependent. Let (B, Xt, Yit) denote the last three node path segment on π where

Xt is a time-dependent direct cause of Yit. Note that we do not put any individual index to

Xt because the proof holds for any index. Xt−1, Xt 6∈ C
P

because Xt 6∈ C (see Lemma 2 in

Section A.2).

Step 4.1 (sub-Case: the second last node is time-independent): First, assume B

is time-independent. Then, because a causal DAG satisfies structural stationarity (Assump-

tion 2), Xt−1 and B have the same relationship as the one between Xt and B. In addition,

since there is an unblocked path from Yk,t−1 to Xt to through B, there exists an unblocked

path from Yk,t−1 to Xt−1 through B. Given that there exists a directed arrow from Xt to Yit,

there exists a directed arrow from Xt−1 to Yi,t−1. Therefore, there is an unblocked back-door

path from Yk,t−1 to Yi,t−1.

Step 4.2 (sub-Case: the second last node is time-dependent): Next, assume B is

time-dependent and therefore we use Bt. First, we show that whenever B is time-dependent,

then the directed arrow is always from Xt to Bt. Suppose there is a directed arrow from Bt
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to Xt. If Bt in C
P

, then this back-door is blocked (therefore, choose another π). So, Bt is not

in C
P

. Therefore, we can collapse Bt into Xt, meaning that if B is time dependent, then the

directed arrow is always from Xt to Bt.

Now, suppose there is a directed arrow from Xt to Bt. We know there exists an unblocked

path from Yk,t−1 to Xt through Bt. Now, because Yi,t−1 ← Xt−1 → Xt → Bt, there is an

unblocked back-door path from Yk,t−1 to Yi,t−1 because the underlying causal DAG satisfies

structural stationarity. 2

A.1.3 No Bias → Independence in Placebo Test

Next, we prove that when set C can block all back-door paths from YNi,t−1 to Yit, set C
P

can block all back-door paths from YNi,t−1 to Yi,t−1. We show the contraposition: when there

is a back-door path from YNi,t−1 to Yi,t−1 that set C
P

cannot block, set C cannot block all

back-door paths from YNi,t−1 to Yit. Since C does not include any Des(Yk,t−1), we know C
P

also does not include any Des(Yk,t−1). Also, by definition, C
P

does not include any Des(Yi,t−1).

Therefore, without loss of generality, we can focus on unblocked back-door paths that start

with an arrow pointing to Yk,t−1 where k ∈ Ni and end with an arrow pointing to Yi,t−1.

Step 1 (Control Set cannot block all back-door paths to the Placebo outcome):

First, we show that when there is a back-door path from Yk,t−1 to Yi,t−1 that set C
P

cannot

block, set C cannot block all back-door paths from Yk,t−1 to Yi,t−1. From set C
P

to set C,

we need to (1) add Des(Yi,t−1) and (2) remove C
(−1)

and YNi,t−2. We show here that this

process cannot block a back-door path that set C
P

cannot block. The step (1) cannot block

the back-door path because adding Des(Yi,t−1) cannot block a back-door path from Yk,t−1 to

Yi,t−1 unblocked by set C
P

(see Lemma 3 in Section A.2). For (2), we first check whether

removing Xt−1 ∈ C
(−1)

can block a back-door path that set C
P

cannot block. To begin with,

we can remove Xt−1 because Xt ∈ C. Removing variables Xt−1 can be helpful if Xt−1 is a

collider or a descendant of a collider for a back-door path. However, if so, Xt is a descendant of

a collider and it is in set C and therefore, removing Xt−1 cannot block any additional paths.

Next, we need to check whether removing a variable B ∈ YNi,t−2 can block the back-door

path that the set C
P

cannot block. Removing variable B can be helpful if B is a collider or

a descendant of a collider for a back-door path. If so, there is an unblocked back-door path

(with respect to C
P

) that starts with an arrow pointing to B and ends with an arrow pointing
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to Yi,t−1, i.e., B ← . . .→ Yi,t−1. Since B has a directed arrow pointing to Yk,t−1, removing B

unblock a new back-door path from Yk,t−1 through B, which points to Yi,t−1. Although this

unblocked back-door path with respect to C is different from the unblocked back-door path

with respect to C
P

, the paths are the same after node B and therefore at least the last three

nodes are the same. Therefore, we can use π to be a back-door from Yk,t−1 to Yi,t−1 that both

sets C and C
P

cannot block.

Step 2 (Case I: the last node of the unblocked back-door path is time-independent):

Consider the case in which the last two nodes are (Z → Yi,t−1) and Z is time-independent.

Then, since Z → Yit from structural stationarity (Assumption 2), set C cannot block this

back-door.

Step 3 (Case II: the last node of the unblocked back-door path is time-dependent):

Next, consider the case in which the last two nodes are (Xt−1 → Yi,t−1). Since Xt−1 6∈ C
P

and

Xt−1 6∈ Des(Yi,t−1), Xt−1, Xt 6∈ C. Therefore, set C cannot block Yk,t−1 ← · · ·Xt−1 → Xt →

Yit. 2

A.2 Proof of Lemmas used for Theorem 1

Here, we prove all the lemmas used to prove Theorem 1.

Lemma 1 (Equivalence between Back-Door Criteria and No Omitted Confounder

Assumption (Shpitser et al., 2012)) For a pretreatment adjustment set C (i.e., variables

not affected by the treatment), the following two statements hold.

1. If a set C satisfies the back-door criterion with respect to (Yit,YNi,t−1) in causal DAG G,

then Yit(d) ⊥⊥ YNi,t−1 | C holds in every causal model inducing causal DAG G (Pearl,

1995).

2. If Yit(d) ⊥⊥ YNi,t−1 | C holds in every causal model inducing causal DAG G, then a set C

satisfies the back-door criterion with respect to (Yit,YNi,t−1) in causal DAG G (Shpitser

et al., 2012).

Lemma 2 Xt 6∈ C→ Xt−1, Xt 6∈ C
P
.

Proof First, we show that Xt−1, Xt, Xt+1 6∈ C because set C is proper. It is because if Xt−1

or Xt are in C, then the lag adjustment of the control set C can block this path. If this path
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is the only back-door path, then C is not proper. If there is another back-door path that any

subset of {C,C(−1)
,C

(+1)
,YNi,t−2} cannot block, choose it as π.

Next, we show that Xt−1, Xt 6∈ C
P

. There are three ways for a variable to be in the placebo

set C
P

. We discuss them in order. First, a variable can be in the placebo set because it was

already in the control set. We know Xt−1, Xt 6∈ C, so this option is not feasible. Second, a

variable can be in the placebo set because it is a lag of the original control variables. Given

that Xt, Xt+1 are not in the control set, this option is also not feasible. Finally, a variable can

be in the placebo set because it is a lag of the treatment variable. (a) It is important to notice

that Xt−1 /∈ YNi,t−2 because Xt /∈ YNi,t−1 (i.e., the treatment cannot be the last node of the

unblocked back-door path). (b) Now, we verify Xt /∈ YNi,t−2. First, this back-door path can

be blocked by a subset of {C,C(−1)
,C

(+1)
,YNi,t−2}. If this back-door is the only unblocked

back-door, set C is not proper, therefore this is contradictory. If there is another back-door

path that both C and C
P

cannot block, choose it as π. 2

Lemma 3 Adding Des(Yi,t−1) cannot block a back-door path from Yk,t−1 to Yi,t−1 unblocked

by set C
P

.

Proof Suppose controlling for Des(Yi,t−1) can block a back-door path from Yk,t−1 to Yi,t−1

that the original set C
P

cannot block. Since C
P

does not include any Des(Yk,t−1) or Des(Yi,t−1),

this unblocked back-door path contains an arrow pointing to Yi,t−1.

Step 1 (Set up the main node B): At least one of Des(Yi,t−1) is a non-collider on this

path given that controlling for Des(Yi,t−1) can block this path. Let B be such a variable and

focus on one arrow pointing out from the node B.

Step 2 (Case I. Consider one side of the main node B): First, suppose this direction

leads to Yi,t−1. Then, since B is a Des(Yi,t−1), a directed path from node B to Yi,t−1 cannot

exist and therefore, there must be a collider on this direction of the path. Since this collider

is also in Des(Yi,t−1) and therefore not controlled in the original C
P

, this back-door is blocked

by set C
P
.

Step 3 (Case II. Consider the other side of the main node B): Next, consider the

direction that leads to Yk,t−1. Then, since Yi,t−1 is not a cause of Yk,t−1, a directed path from

node B to Yk,t−1 cannot exist and therefore, there must be a collider on this direction of the
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path. Since this collider is also in Des(Yi,t−1) and therefore not controlled in the original C
P

,

this back-door is blocked by set C
P
. Hence, this is contradiction. This proves that controlling

for Des(Yi,t−1) cannot block a back-door path from Yk,t−1 to Yi,t−1 that set C
P

cannot block.

2

A.3 Proof of Theorem 2

Below, we describe two lemmas useful for proving Theorem 2. For completeness, their proofs

follow.

Lemma 4

Yit(d
L) ⊥⊥ YNi,t−1 | Uit,Cit =⇒ Yit(d

L) ⊥⊥ YNi,t−1 | Uit,Xit,C
B
it

Lemma 5 Under Assumption 3,

E[Yit(d
L) | Dit = dH ,Xit = x,C

B
it = c]− E[Yit(d

L) | Dit = dL,Xit = x,C
B
it = c]

= E[Yi,t−1 | Dit = dH ,Xi,t−1 = x,C
B
it = c]− E[Yi,t−1 | Dit = dL,Xi,t−1 = x,C

B
it = c].

Proof of the theorem Based on Lemma 5 and Assumption 3,

E[Yit(d
L) | Dit = dH ,Xit = x,C

B
it = c]

= E[Yit(d
L) | Dit = dL,Xit = x,C

B
it = c]

+E[Yi,t−1 | Dit = dH ,Xi,t−1 = x,C
B
it = c]− E[Yi,t−1 | Dit = dL,Xi,t−1 = x,C

B
it = c]

= E[Yit | Dit = dL,Xit = x,C
B
it = c]

+E[Yi,t−1 | Dit = dH ,Xi,t−1 = x,C
B
it = c]− E[Yi,t−1 | Dit = dL,Xi,t−1 = x,C

B
it = c].

Therefore,

E[Yit(d
H)− Yit(dL) | Dit = dH ]

=

∫
{E[Yit(d

H) | Dit = dH ,Xit,C
B

it ]

−E[Yit(d
L) | Dit = dH ,Xit,C

B

it ]}dFXit,C
B
it|Dit=dH (x, c)

=

∫
E[Yit | Dit = dH ,Xit,C

B

it ]dFXit,C
B
it|Dit=dH (x, c)

−
{
E[Yit | Dit = dL,Xit = x,C

B

it = c] + E[Yi,t−1 | Dit = dH ,Xi,t−1 = x,C
B

it = c]

−E[Yi,t−1 | Dit = dL,Xi,t−1 = x,C
B

it = c]
}
dF

Xit,C
B
it|Dit=dH (x, c)
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=

∫ {
E[Yit | Dit = dH ,Xit,C

B

it ]− E[Yit | Dit = dL,Xit,C
B

it ]
}
dF

Xit,C
B
it|Dit=dH (x, c)

−
∫ {

E[Yi,t−1 | Dit = dH ,Xi,t−1,C
B

it ]− E[Yi,t−1 | Dit = dL,Xi,t−1,C
B

it ]
}
dF

Xit,C
B
it|Dit=dH (x, c).

This completes the proof of Theorem 2 in cases where Uit is time-dependent and affected

by the outcome at time t. In Section A.3.3, we extend results to two other cases (1) when

Uit is time-dependent but is not affected by the outcome at time t and (2) when unobserved

confounder is time-independent Zi. 2

A.3.1 Proof of Lemma 4

If we write out control set C, the lemma can be rewritten as

Yit(d
L) ⊥⊥ YNi,t−1 | Uit,Xit,X∗it, X̃i

=⇒ Yit(d
L) ⊥⊥ YNi,t−1 | Uit,Xit,X∗it,X∗i,t−1, X̃i,YNi,t−2.

First, note that all variables in set {Uit,Xit,X∗it,X∗i,t−1, X̃i,YNi,t−2} are neither affected by

the potential outcome, Yit(d
L), nor affected by the treatment YNi,t−1. The difference between

the conditioning sets in the right- and left-hand sides is X∗i,t−1 and YNi,t−2. Including these

variables can open back-door paths only when these variables are colliders for these new back-

door paths. However, because a descendant of X∗i,t−1, X∗it, is in the conditioning set, it is

contradictory if conditioning on X∗i,t−1 can open a new back-door path. Additionally, because

YNi,t−2 is a parent of the treatment YNi,t−1, it is contradictory if conditioning on YNi,t−2

can open a new back-door path. Therefore, including X∗i,t−1 and YNi,t−2 don’t open any

back-door path, which completes the proof. 2

A.3.2 Proof of Lemma 5

Under Assumption 3,∫
C
{E[Yit(d

L)|Uit = u1,Xit = x,C
B

it = c]− E[Yit(d
L)|Uit = u0,Xit = x,C

B

it = c]}

×{dF
Uit|Dit=dH ,Xit=x,C

B
it=c

(u1)− dF
Uit|Dit=dL,Xit=x,C

B
it=c

(u1)}

=

∫
C
{E[Yi,t−1|Ui,t−1 = u1,Xi,t−1 = x,C

B

it = c]− E[Yi,t−1|Ui,t−1 = u0,Xi,t−1 = x,C
B

it = c]}

×{dF
Ui,t−1|Dit=dH ,Xi,t−1=x,C

B
it=c

(u1)− dF
Ui,t−1|Dit=dL,Xi,t−1=x,C

B
it=c

(u1)}.

Now we analyze each side of the equation.∫
C
{E[Yit(d

L)|Uit = u1,Xit = x,C
B

it = c]− E[Yit(d
L)|Uit = u0,Xit = x,C

B

it = c]}
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×{dF
Uit|Dit=dH ,Xit=x,C

B
it=c

(u1)− dF
Uit|Dit=dL,Xit=x,C

B
it=c

(u1)}

=

∫
C
E[Yit(d

L)|Uit = u1,Xit = x,C
B

it = c]

×{dF
Uit|Dit=dH ,Xit=x,C

B
it=c

(u1)− dF
Uit|Dit=dL,Xit=x,C

B
it=c

(u1)}

=

∫
C
E[Yit(d

L)|Dit = dH , Uit = u1,Xit = x,C
B

it = c]dF
Uit|Dit=dH ,Xit=x,C

B
it=c

(u1)

−
∫
C
E[Yit(d

L)|Dit = dL, Uit = u1,Xit = x,C
B

it = c]dF
Uit|Dit=dL,Xit=x,C

B
it=c

(u1)

= E[Yit(d
L)|Dit = dH ,Xit = x,C

B

it = c]− E[Yit(d
L)|Dit = dL,Xit = x,C

B

it = c],

where the first equality follows from the fact that E[Yit(d
L)|Uit = u0,Xit = x,C

B
it = c]

does not include u1, the second equality comes from Lemma 4, and the final from the rule of

conditional expectations. Similarly,∫
C
{E[Yi,t−1|Ui,t−1 = u1,Xi,t−1 = x,C

B

it = c]− E[Yi,t−1|Ui,t−1 = u0,Xi,t−1 = x,C
B

it = c]}

×{dF
Ui,t−1|Dit=dH ,Xi,t−1=x,C

B
it=c

(u1)− dF
Ui,t−1|Dit=dL,Xi,t−1=x,C

B
it=c

(u1)}

= E[Yi,t−1 | Dit = dH ,Xi,t−1 = x,C
B

it = c]− E[Yi,t−1 | Dit = dL,Xi,t−1 = x,C
B

it = c].

Taken together,

E[Yit(d
L) | Dit = dH ,Xit = x,C

B

it = c]− E[Yit(d
L) | Dit = dL,Xit = x,C

B

it = c]

= E[Yi,t−1 | Dit = dH ,Xi,t−1 = x,C
B

it = c]− E[Yi,t−1 | Dit = dL,Xi,t−1 = x,C
B

it = c].

2

A.3.3 Other cases

In Theorem 2, we consider cases in which Uit is time-dependent and affected by the outcome

at time t. Now we study two other cases (1) when Uit is time-dependent but is not affected by

the outcome at time t and (2) when unobserved confounder is time-independent Zi. For both

cases, Assumption 3 needs to be modified accordingly, although their substantive meanings

stay the same. The definition of the bias-corrected estimator is also the same. For case (1),

define Ũi ≡ (Uit, Ui,t−1) and for case (2), define Ũi ≡ Zi. Then, Assumption 3 is modified as

follows.

1. Time-invariant effect of unobserved confounder Ũ : For all u1, u0,x and c,

E[Yit(d
L) | Ũi = u1,Xit = x,C

B
it = c]− E[Yit(d

L) | Ũi = u0,Xit = x,C
B
it = c]

= E[Yi,t−1 | Ũi = u1,Xi,t−1 = x,C
B
it = c]− E[Yi,t−1 | Ũi = u0,Xi,t−1 = x,C

B
it = c].
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2. Time-invariant imbalance of unobserved confounder Ũ : For all u,x and c,

Pr(Ũi ≤ u | Dit = dH ,Xit = x,C
B
it = c)− Pr(Ũi ≤ u | Dit = dL,Xit = x,C

B
it = c)

= Pr(Ũi ≤ u | Dit = dH ,Xi,t−1 = x,C
B
it = c)− Pr(Ũi ≤ u | Dit = dL,Xi,t−1 = x,C

B
it = c).

A.4 Extensions

A.4.1 Sensitivity Analysis

As Lemma 5 shows, Assumption 3 is equivalent to the following equality.

E[Yit(d
L) | Dit = dH ,Xit = x,C

B
it = c]− E[Yit(d

L) | Dit = dL,Xit = x,C
B
it = c]

= E[Yi,t−1 | Dit = dH ,Xi,t−1 = x,C
B
it = c]− E[Yi,t−1 | Dit = dL,Xi,t−1 = x,C

B
it = c],

which substantively means the time-invariant bias. However, this assumption might hold only

approximately in applied settings. To assess the robustness of the bias-corrected estimates, we

consider a sensitivity analysis. In particular, we introduce sensitivity parameter λ as follows.

Bt(x, c)

Bt−1(x, c)
= λ

where

Bt(x, c) = E[Yit(d
L) | Dit = dH ,Xit = x,C

B
it = c]− E[Yit(d

L) | Dit = dL,Xit = x,C
B
it = c],

Bt−1(x, c) = E[Yi,t−1 | Dit = dH ,Xi,t−1 = x,C
B
it = c]− E[Yi,t−1 | Dit = dL,Xi,t−1 = x,C

B
it = c].

The time-invariance assumption (Assumption 3) corresponds to λ = 1. Using this sensitivity

parameter, we can re-define the bias-corrected estimator as follows.

τ̂Main − λ× δ̂Placebo

Therefore, a sensitivity analysis is to compute the bias-corrected estimator for a range of

plausible values of λ and investigate whether substantive conclusions vary according to the

choice of the sensitivity parameter.

B Causal Directed Acyclic Graphs: Review

In the paper, we use a causal directed acyclic graph and nonparametric structural equations to

represent causal relationships. Here, we review basic definitions and results. See Pearl (2000)
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for a comprehensive review. Following Pearl (1995), we define a causal directed acyclic graph

(causal DAG) to be a set of nodes and directed edges among nodes such that the graph has no

cycles and each node corresponds to a univariate random variable. Each random variable is

given by its nonparametric structural equation. When there is a directed edge from one variable

to another variable, the latter variable is a function of the former variable. For example, in a

causal DAG in Figure A1 (a), four random variables (A,B,C,D) are given by nonparametric

structural equations in Figure A1 (b); A = fA(εA), B = fB(εB), C = fC(A,B, εC), and D =

fD(A,B,C, εD), where fA, fB, fC and fD are unknown nonparametric structural equations and

(εA, εB, εC , εD) are mutually independent errors. The node that a directed edge starts from is

called the parent of the node that the edge goes into. The node that the edge goes into is the

child of the node it comes from. If two nodes are connected by a directed path, the first node

is the ancestor of every node on the path, and every node on the path is the descendant of the

first node (Pearl, 2000). For example, node A is a parent of node C, and nodes C and D are

descendants of node B. The requirement that the errors be mutually independent essentially

means that there is no variable absent from the graph which, if included on the graph, would

be a parent of two or more variables.

The nonparametric structural equations are general – random variables may depend on any

function of their parents and variable-specific errors. They encode counterfactual relationships

between the variables on the graph by recursively representing one-step-ahead counterfactuals.

Under a hypothetical intervention setting A to a, the distribution of the variables B,C, and D

are then recursively given by the nonparametric structural equations with A = fA(εA) replaced

by A = a. Specifically, B = fB(εB), C = C(a) = fC(A = a,B, εC), and D = D(a) = fD(A =

a,B,C = C(a), εD) where C(a), D(a) are the counterfactual values of C and D when A is set

to a.

C Example of Structural Stationarity

Structural stationarity is satisified in a more general NPSEM than the example in the main

text. First, variables can be affected not only by one-time lag but also by longer-time lags.

For example, outcome Yit can be affected not only by the neighbors’ outcomes at the last

period YNi,t−1 but also by the neighbors’ outcomes at two periods before YNi,t−2. Second,
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A

B

C

D

(a) A causal directed acyclic graph

A = fA(εA)

B = fB(εB)

C = fC(A,B, εC)

D = fD(A,B,C, εD)

(b) A structural equation model

Figure A1: An Example of Causal DAGs and SEMs

each variable can be not only affected by other variables within each unit but also by other

variables of neighbors. For example, outcome Yit can be affected by LNi,t−1 and UNi,t−1.

We now consider an example that incorporates more complex feedback between variables

across time and neighbors. For i ∈ {1, . . . , n} and t ∈ {1, . . . , T}, suppose the data are

generated by sequentially evaluating the following set of equations:

(Outcome variable)

Yit = fY (YNi,t−1,YNi,t−2, Yi,t−1,Lit,LNi,t−1, L̃i,Uit,UNi,t−1, ε
Y
it ),

(Time-varying Observed variables)

Lit = fL(Li,t−1,LNi,t−1, L̃i, Yi,t−1,YNi,t−2,Ui,t−1,UNi,t−2, εεε
L
it),

(Time-invariant Observed variables)

L̃i = f
L̃

(Li,0,LNi,0, Yi,0,YNi,0,Ui,0,UNi,0, εεε
L̃
i ),

(Time-varying Unobserved variables)

Uit = fU (Ui,t−1,UNi,t−1, Yi,t−1,YNi,t−2,Li,t−1,LNi,t−2, L̃i, εεε
U
it).

(A1)

Several points are worth noting. First, variables can be affected not only by one-time lag

but also by longer-time lags. For example, outcome Yit is affected not only by the neighbors’

outcomes at the last period YNi,t−1 but also by the neighbors’ outcomes at two periods before

YNi,t−2. While we do not restrict the number of time-lags and allow for higher-order temporal

dependence, we keep our focus on the ACDE defined in equation (1) as our causal estimand.

Second, each variable is not only affected by other variables within each unit but also by other

variables of neighbors. For example, outcome Yit is affected by LNi,t−1 and UNi,t−1. Time-

vaying unmeasured variables Uit is affected by UNi,t−1, YNi,t−2, and LNi,t−2. Even though the

11



complexity of the NPSEMs are different in equations (5) and (A1), they both satisfy structural

stationarity.

D Simulation Study

In this section, we consider the performance of the proposed placebo test and bias-corrected

estimator in a simulation study calibrated to the real hate crime data. In Section D.1, we show

that (1) a placebo estimator is consistent for zero under the no omitted confounders assumption

as Theorem 1 implies and (2) the statistical power of the proposed placebo test is comparable

to an “oracle” test — test whether an estimated ACDE is statistically distinguishable from

the true ACDE, which is available only in simulations. In Section D.2, we demonstrate that

the bias-corrected estimator reduces bias and root mean squared error (RMSE) even under a

slight violation of the time-invariance assumption (Assumption 3).

Setup. To approximate realistic data generating processes, we use the same hate crime data

as in the main application but focus on another important outcome, the number of attacks

against refugee housing, which is also an important aspect of hate crimes studied in the

literature. As for observed covariates, we include five major contextual variables; the number of

refugees, the number of crimes per 100,000 inhabitants, per capita income, the unemployment

rate, and the share of school leavers without lower secondary education graduation. We fit a

linear regression with these five covariates, as in equation (9), to estimate the basic parameters

of the data generating process.

We simulate a distance matrix W based on the stochastic block model (Holland et al.,

1983) for each of the sample size n ∈ {100, 500, 1000, 2000}. Each group consists of ten units

and there exist K = n/10 groups. K groups are divided into L = K/5 blocks. If units i

and j are within the same group, Pr(Wij = 1) = 0.8. If units i and j are within the same

block but not in the same group, Pr(Wij = 1) = 0.2. If units i and j are in different blocks,

Pr(Wij = 1) = 0. This setup is designed to ensure that the network dependency does not keep

growing as the sample size grows. See Sävje et al. (2017) and Ogburn et al. (2017) for general

discussions on network asymptotics.

We then simulate an unobserved contextual variable Uit. In particular, we consider two

scenarios; (1) time-invariant confounding where assumptions for both the placebo test and the

12



bias-corrected estimator hold, and (2) structural stationarity where assumptions hold for the

placebo test but the time-invariance assumption required for the bias-correction is violated. For

the first scenario, we set unobserved contextual variable U to be time-invariant where Ui = Ũk[i]

where Ũk ∼ N (0, 0.5) and k[i] is a group indicator for unit i. For the second scenario, we draw

unobserved contextual variable U as follows. Uit = Ũk[i],t where Uk,t = 0.9Uk,t−1 +N (0, 0.1)

where Uk0 ∼ N (0, 0.5).

Given this setup, we sample potential outcomes using the following data generating process.

Yi,t+1(Dit) = α+ τDit + X
>
i,t+1β + γUi,t+1 + εi,t+1, (A2)

for sample size in each time period n ∈ {100, 500, 1000, 2000} and the total number of time peri-

ods T = 20. Dit ≡W>
i Yt indicates the treatment variable, five-dimensional vector Xi,t+1 rep-

resents five observed covariates from the real hate crime data, Ui,t+1 is the unobserved contex-

tual confounder affecting multiple units, and the error term εi,t+1 follows the normal distribu-

tion, εi,t+1 ∼ N (0, 0.1). Coefficients {α = 0.59, τ = 0.74, β = (0.75,−0.11,−0.28,−3.38, 3.90)}

are based on estimated parameters from the real hate crime data. For the effect of unobserved

contextual confounder U , we consider two different values γ ∈ {0.05, 0.1} in Appendix D.1,

and we set it to larger unmeasured confounding γ = 0.1 in Appendix D.2. Based on this data

generating process, we conduct 5000 independent Monte Carlo simulations.

D.1 Placebo Test

First, we consider the consistency of the proposed placebo test under the no omitted con-

founders assumption. Theorem 1 implies that when the no omitted confounders assumption

holds, the treatment variable and the lagged dependent variable are conditionally independent.

In particular, we fit a placebo regression:

Yit = α0 + δDit + τ0Di,t−1 + X
>
itβ0 + γ0Uit + εit. (A3)

We expect that a test statistic δ̂ is consistent for zero under the no omitted confounders

assumption. The first row in Figure A2 presents the results. As Theorem 1 shows, under

the no omitted confounders assumption, the placebo estimator δ̂ converges to zero as the

sample size grows. Because Theorem 1 only requires structural stationarity, the placebo test

is consistent under both scenarios.
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Figure A2: Simulation Results on Consistency of the Placebo Test under the No Omitted
Confounders Assumption. Note: The Smaller and Larger Confounding corresponds to γ =
{0.05, 0.1}, respectively. Results are based on 5000 Monte Carlo draws using four sample sizes.

We also investigate the statistical power of the proposed placebo test when the no omitted

confounders assumption is violated. We fit a placebo regression:

Yit = α̃0 + δ̃Dit + τ̃0Di,t−1 + X
>
it β̃0 + ε̃it. (A4)

The key difference is that this regression now ignores contextual confounder Uit. Here,
̂̃
δ serves

as a test statistic for the placebo test. We compare this to an oracle test where we fit the

following main linear regression,

Yi,t+1 = αm + τmDit + X
>
i,t+1βm + ξi,t+1, (A5)

and test H0 : τm = τ. This test is an “oracle” test because it is available only in the simulation

where we know the true ACDE τ. Figure A3 presents the results.

Three findings are worth noting. First, when unmeasured confounding is smaller, it is

naturally harder to detect bias (and statistical power of the proposed test is lower). Impor-

tantly, however, estimated causal effects are also closer to the true causal effects, and thus,

statistical power of the “oracle” test is also lower. Second, when unmeasured confounding is

larger, statistical power of the proposed placebo test is closer to that of the oracle test, and the

proposed test eventually achieves the same level of power with large enough sample size. On

average, statistical power of the proposed test is about 80% of statistical power of the “oracle”

test. Finally, as we might expect, it is easier for the proposed method to detect time-invariant

unmeasured confounding, but the proposed placebo test can still properly detect time-varying
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Figure A3: Simulation Results on Statistical Power of Placebo Test. Note: The Smaller and
Larger Confounding corresponds to γ = {0.05, 0.1}, respectively. Results are based on 5000
Monte Carlo draws using four sample sizes.

unmeasured confounding as long as structural stationarity holds. Given that the oracle test is

available only in simulations where the true causal effect is known, these results suggest that

the placebo test can serve as a practical tool to detect biases in applied settings.
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D.2 Bias-Corrected Estimator

In Section 4.3, we show that the proposed bias-corrected estimator can identify the ACDE for

the treated under Assumption 3. Here, we investigate how much the bias-corrected estimator

can reduce bias and RMSE even in settings where this required time-invariance assumption is

slightly violated.

In particular, we compare an uncorrected estimator, which ignores unobserved contex-

tual confounder U , and the proposed bias-corrected estimator under two scenarios; (1) time-

invariant confounding and (2) structural stationarity. The time-invariance assumption required

for the bias correction (Assumption 3) holds in the first but not in the second scenario.

Figure A4 presents the simulation results. In the time-invariant confounding case (the first

column), whereas the bias in the conventional uncorrected estimator is about 0.12, the bias

in the proposed bias-corrected estimator is essentially 0. The bias is corrected as Theorem 2

implies. The RMSE also significantly improves upon the uncorrected conventional estimator.

The 95% confidence interval is close to its nominal coverage rate in contrast to that of the

uncorrected estimator.

More importantly, even in structural stationarity case (the second column in Figure A4)

where the required assumption for the bias correction is slightly violated, the bias-corrected

estimator shows reasonable performance. While the bias in the conventional uncorrected

estimator is about 0.04, the bias in the proposed bias-corrected estimator is less than 0.01.

Although the bias does not vanish, it reduces by about 80%. This benefit is also clear in the

results of RMSE. Because the bias-corrected estimator tends to have a larger standard error,

the RMSE of the bias-corrected estimator is bigger than the one of the uncorrected estimator

when the sample size is small. However, as the sample size grows, the bias-corrected estimator

outperforms the uncorrected estimator. Finally, as the required time-invariance assumption

is violated, the coverage of the 95% confidence interval for the bias-corrected estimator is

slightly smaller than its nominal coverage rate, but it attains more than 90% in contrast

to the performance of the uncorrected estimator. These results suggest that the proposed

bias-corrected estimator can reduce bias and RMSE in applied settings where the necessary

assumption might hold only approximately.
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Figure A4: Simulation Results on Bias-Corrected Estimator. Note: The first row compares
the absolute bias of the uncorrected estimator (empty black square) and the bias-corrected
estimator (solid blue circle). The second row examines the root mean squared error (RMSE)
and the third row shows the coverage of the 95% confidence interval. The first and second
columns correspond to the time-invariant confounding and structural stationarity, respectively.
Results are based on 5000 Monte Carlo draws using four sample sizes.

17



E Empirical Analysis in Section 5

E.1 Control Sets and Placebo Sets

We investigate five different control sets to illustrate how to use the proposed placebo test and

bias-corrected estimator. Table A1 describes types of variables we use for those five control

sets and their corresponding placebo sets. The column of “Main model” indicates variables

used for control sets and the column of “Placebo model” indicates corresponding variables in

placebo sets.

The first control set (C1) includes variables from “Basic Variables.” The second control set

(C2) adds variables from “Two-month Lags” to the first control set. The third control set adds

state fixed effects to the second control set. The fourth control set adds all the variables from

“Contextual Variables,” which include variables on refugees, demographics, general crimes,

economic indicators, education, and politics. Note that these contextual variables are measured

only annually. The final fifth set adds the time trend variable as third-order polynomials to

the fourth set.
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Type Main Model Placebo Model

Outcome Physical Attackt+1 Physical Attackt

Treatment Physical Attackt in Neighbors Physical Attackt in Neighbors

A Control Set/A Placebo Set

Basic Variables Physical Attackt Physical Attackt−1

Physical Attackt−1 in Neighbors Physical Attackt−1,t−2 in Neighbors

the number of neighbors the number of neighbors

variance of Wi variance of Wi

Two-month Lags Physical Attackt−1 Physical Attackt−2

Contextual Variables (annual)

Refugee variables Total number of refugees Total number of refugees

Total number of foreign born Total number of foreign born

Population variables Population size Population size

Share of male inhabitants Share of male inhabitants

Crime variables Number of general crimes per 100,000 inhabitants Number of general crimes per 100,000 inhabitants

Percent of general crimes solved Percept of general crimes solved

Economic variables Number of newly registered business Number of newly registered business

Number of newly deregistered business Number of newly deregistered business

Number of insolvency Number of insolvency

per capita income per capita income

Number of employees with social security Number of employees with social security

Unemployment rate Unemployment rate

Education variables Share of school leavers Share of school leavers

without lower secondary education graduation without lower secondary education graduation

Political variables Turnout rate in 2013 Turnout rate in 2013

Vote share of extreme right and Vote share of extreme right and

populist right-wing parties in 2013 populist right-wing parties in 2013

Table A1: Five Control Sets and Placebo Sets: Spatial Diffusion of Hate Crimes.
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E.2 Conditional ACDEs by Education

We present the distribution of proportions of school dropouts without a secondary school

diploma, separately for East Germany and West Germany. Because these distributions are

substantially different between them (Figure A5), we estimate the conditional ACDE by pro-

portions of school dropouts, separately for the East and the West.
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Figure A5: Distribution of Proportions of School Dropouts. Note: For East Germany, we use 9%

as a cutoff for high and low proportions of school dropouts, which is approximately the median value

in East Germany. For West Germany, we use 5% as a cutoff for high and low proportions of school

dropouts, which is approximately the median value in West Germany.

Next, we present the conditional ACDE for counties in East Germany with low proportions of

school dropouts. In contrast to Figure 5, estimates are small.
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Figure A6: Results of the conditional ACDE (Low Proportion of School Dropouts, East). Note:

Figure (a) shows that the last fifth set produces the smallest placebo estimate. Focusing on this fifth

control set, a point estimate of the ACDE in Figure (b) is close to zero and its 95% confidence interval

covers zero. Figure (c) shows that bias-corrected estimates are similar regardless of the selection of

control variables and all of their 95% confidence intervals cover zero.
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Now, we present the conditional ACDEs for counties in West Germany with high and low

proportions of school dropouts. Given that proportions of school dropouts are lower in West

Germany, estimates of the conditional ACDEs are small, in contrast to Figure 5.
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Figure A7: Results of the conditional ACDE (High Proportion of School Dropouts, West).
Note: Figure (a) shows that the third, fourth and fifth sets produce small placebo estimates. Focusing

on these sets, point estimates of the ACDE in Figure (b) are close to zero and sometimes negative.

Figure (c) shows that bias-corrected estimates are similar regardless of the selection of control variables

and all of their 95% confidence intervals cover zero.
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Figure A8: Results of the conditional ACDE (Low Proportion of School Dropouts, West).
Note: Figure (a) shows that all the sets produce small placebo estimates. This is partly because there

are few hate crimes in this area and hence, there is no variation in outcomes and treatments. In

addition, point estimates of the ACDE in Figure (b) are close to zero and sometimes negative. Figure

(c) shows that bias-corrected estimates are similar regardless of the selection of control variables and

all of their 95% confidence intervals cover zero.
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F Example Code

# ##################

# Placebo Tests

# #################

model.s <- glm(cbind(Physical.bin_lag1, 1- Physical.bin_lag1) ~

PhysicalW_lag1 + PhysicalW_lag2 +

Physical.bin_lag2 + Physical.bin_lag3 +

nei.num + nei.var +

log_Total.Ref + log_forgn_total_all + log_pop_mf_total_total.2015 +

log_Crime.num_cases_100thInhab + Crime.perc_cases_solved +

log_bus_reg_total.2015 + log_insolv_total.2015 +

log_vek_percap.2015 + log_empl_ss_resid_total.2016 + log_unemplr_wa18.2015 +

rechte_kreis_anteil + school.leave +

wahlbeteiligung_kreis_anteil+ maenner_anteil_kreis +

bs(Month.num) + factor(ags_state),

data=hc_data, family=binomial)

vcov_s <- sHAC(fit = model.s, K_base = K_base, space_cut = 100, time_cut = 6)

pl.M <- EstimateQOI_space_one(fit = model.s, vcov = vcov_s, data = hc_data)

# ####################

# Main Estimates

# ####################

model.M <- glm(cbind(Physical.bin, 1- Physical.bin) ~

PhysicalW_lag1 +

PhysicalW_lag2 +

Physical.bin_lag1 + Physical.bin_lag2 +

nei.num + nei.var +

log_Total.Ref + log_forgn_total_all + log_pop_mf_total_total.2015 +

log_Crime.num_cases_100thInhab + Crime.perc_cases_solved +

log_bus_reg_total.2015 + log_insolv_total.2015 +

log_vek_percap.2015 + log_empl_ss_resid_total.2016 + log_unemplr_wa18.2015 +

rechte_kreis_anteil + school.leave +

wahlbeteiligung_kreis_anteil+ maenner_anteil_kreis +

bs(Month.num) + factor(ags_state),

data=hc_data, family=binomial)

vcov_M <- sHAC(fit = model.M, K_base = K_base, space_cut = 100, time_cut = 6)

model.M <- EstimateQOI_space_one(fit = model.M, vcov = vcov_M, data = hc_data)

# ###################

# Bias Correction

# ##################

model.B <- glm(cbind(Physical.bin, 1- Physical.bin) ~

PhysicalW_lag1 + PhysicalW_lag2 + PhysicalW_lag3 +

Physical.bin_lag1 + Physical.bin_lag2 +

nei.num + nei.var +

Total.Ref + forgn_total_all + pop_mf_total_total.2015 +

Crime.num_cases_100thInhab + Crime.perc_cases_solved +

log_bus_reg_total.2015 + log_insolv_total.2015 +
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vek_percap.2015 + log_empl_ss_resid_total.2016 + unemplr_wa18.2015 +

rechte_kreis_anteil + school.leave +

wahlbeteiligung_kreis_anteil+ maenner_anteil_kreis +

factor(ags_state) + bs(Month.num),

data=hc_data, family=binomial)

pl.B <- glm(cbind(Physical.bin_lag1, 1- Physical.bin_lag1) ~ PhysicalW_lag1 +

PhysicalW_lag1 + PhysicalW_lag2 + PhysicalW_lag3 +

Physical.bin_lag2 + Physical.bin_lag3 +

nei.num + nei.var +

Total.Ref + forgn_total_all + pop_mf_total_total.2015 +

Crime.num_cases_100thInhab + Crime.perc_cases_solved +

log_bus_reg_total.2015 + log_insolv_total.2015 +

vek_percap.2015 + log_empl_ss_resid_total.2016 + unemplr_wa18.2015 +

rechte_kreis_anteil + school.leave +

wahlbeteiligung_kreis_anteil+ maenner_anteil_kreis +

factor(ags_state) + bs(Month.num),

data=hc_data, family=binomial)

vcov_main_B <- sHAC(fit = model.B, K_base = K_base, space_cut = 100, time_cut = 6)

vcov_pl_B <- sHAC(fit = pl.B, K_base = K_base, space_cut = 100, time_cut = 6)

BC_est <- EstimateQOI_space_BC(fit_main = model.B, vcov_main = vcov_main_B,

fit_pl = pl.B, vcov_pl = vcov_pl_B,

data = hc_data)

## ##################

## R Functions

## ##################

# Estimating Spacial HAC Variance

sHAC <- function(fit, K_base,

space_cut = 100, time_cut = 6,

space_W_use, time_W_use){

# create K_mat

if(missing(space_W_use)){

space_W <- K_base$space_W

# space_cut

space_W_use0 <- space_W/space_cut

space_W_use0[space_W_use0 > 1] <- 1

space_W_use <- 1 - space_W_use0

}else{

space_W_use <- space_W_use

}

if(missing(time_W_use)){

time_W <- K_base$time_W

# time_cut

time_W_use0 <- time_W/time_cut
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time_W_use0[time_W_use0 > 1] <- 1

time_W_use <- 1 - time_W_use0

}else{

time_W_use <- time_W_use

}

K_mat <- space_W_use*time_W_use

vcov_s <- sHAC0(fit = fit, K_mat = K_mat)

return(vcov_s)

}

sHAC0 <- function(fit, K_mat){

X <- model.matrix(fit)

residual <- fit$y - predict(fit, type = "response")

score <- as.matrix(residual*X)

V0 <- (t(score) %*% K_mat %*% score)

B_inv <- vcov(fit)

vcov_s <- B_inv %*% V0 %*% B_inv

return(vcov_s)

}

# Estimating Quantities of Interest

EstimateQOI_space_BC <- function(fit_main, vcov_main,

fit_pl, vcov_pl,

data, treat.var = 0.27, cont.var = 0, seed = 1234){

set.seed(seed)

data.d.T <- data.d.C <- data

data.d.T$PhysicalW_lag1 <- treat.var

data.d.C$PhysicalW_lag1 <- cont.var

formula_main <- formula(fit_main)

formula_pl <- formula(fit_pl)

X_pl.T <- model.matrix(formula_pl, data=data.d.T)

X_pl.C <- model.matrix(formula_pl, data=data.d.C)

X_m.T <- model.matrix(formula_main, data=data.d.T)

X_m.C <- model.matrix(formula_main, data=data.d.C)

# Sample with the new vcov-matrix

sim.coef_pl <- mvrnorm(n=1000, mu = coef(fit_pl), Sigma= vcov_pl)

sim.coef_m <- mvrnorm(n=1000, mu = coef(fit_main), Sigma= vcov_main)

# pl

X_pl.T.lin <- X_pl.T %*% t(sim.coef_pl)

X_pl.C.lin <- X_pl.C %*% t(sim.coef_pl)

pred_pl.T <- inv.logit(X_pl.T.lin)

pred_pl.C <- inv.logit(X_pl.C.lin)
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# m

X_m.T.lin <- X_m.T %*% t(sim.coef_m)

X_m.C.lin <- X_m.C %*% t(sim.coef_m)

pred_m.T <- inv.logit(X_m.T.lin)

pred_m.C <- inv.logit(X_m.C.lin)

# BC

qoi_mat <- (pred_m.T - pred_m.C) - (pred_pl.T - pred_pl.C)

qoi.sim <- apply(qoi_mat, 2, mean)

qoi.mean <- mean(qoi.sim)

qoi.sd <- sd(qoi.sim)

output <- c("qoi.mean" = qoi.mean, "qoi.sd" = qoi.sd)

return(output)

}

EstimateQOI_space_one <- function(fit, vcov, data,

treat.var = 0.27, cont.var = 0, seed = 1234){

set.seed(seed)

data.d.T <- data.d.C <- data

data.d.T$PhysicalW_lag1 <- treat.var

data.d.C$PhysicalW_lag1 <- cont.var

formula_use <- formula(fit)

X.T <- model.matrix(formula_use, data=data.d.T)

X.C <- model.matrix(formula_use, data=data.d.C)

# Sample with the new vcov-matrix

sim.coef <- mvrnorm(n=1000, mu = coef(fit), Sigma = vcov)

# predict

X.T.lin <- X.T %*% t(sim.coef)

X.C.lin <- X.C %*% t(sim.coef)

pred.T <- inv.logit(X.T.lin)

pred.C <- inv.logit(X.C.lin)

# BC

qoi_mat <- (pred.T - pred.C)

qoi.sim <- apply(qoi_mat, 2, mean)

qoi.mean <- mean(qoi.sim)

qoi.sd <- sd(qoi.sim)

output <- c("qoi.mean" = qoi.mean, "qoi.sd" = qoi.sd)

return(output)

}
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