
Identification of Causal Diffusion Effects Using

Placebo Outcomes Under Structural Stationarity∗

Naoki Egami†

First Version: August 29, 2018

This Version: January 22, 2022

Abstract

Social and biomedical scientists have long been interested in the process through which

ideas and behaviors diffuse. In this article, we study an urgent social problem, the spatial

diffusion of hate crimes against refugees in Germany, which has admitted more than 1

million asylum seekers since the 2015 refugee crisis. Despite its importance, identification

of causal diffusion effects, also known as peer and contagion effects, remains challenging

because the commonly used assumption of no omitted confounders is often untenable due

to contextual confounding and homophily bias. To address this long-standing problem, we

examine causal identification using placebo outcomes under a new assumption of structural

stationarity, which formalizes the underlying diffusion process with a class of nonparametric

structural equation models with recursive structure. We show under structural stationarity

that a lagged dependent variable is a general, valid placebo outcome for detecting a wide

range of biases, including the two types mentioned above. We then propose a difference-

in-differences style estimator that can directly correct biases under an additional causal

assumption. Analyzing fine-grained geo-coded hate crime data from Germany, we show

when and how the proposed methods can detect and correct unmeasured confounding in

spatial causal diffusion analysis.
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1 Introduction

Scientists have long been interested in how ideas and behaviors diffuse across space, networks,

and time. For example, social scientists have studied the diffusion of policies and voting be-

haviors in political science (Sinclair, 2012; Graham et al., 2013; Jones et al., 2017), educational

outcomes and crimes in economics (Glaeser et al., 1996; Sacerdote, 2001; Duflo et al., 2011),

and innovations and job attainment in sociology (Rogers, 1962; Granovetter, 1973). Epi-

demiologists and researchers in public health have focused on the spread of infectious disease

(Halloran and Struchiner, 1995; Morozova et al., 2018; Cai et al., 2019) and health behavior

(Christakis and Fowler, 2013). In each of these research areas, a growing number of scholars

aim to estimate the causal impact of diffusion dynamics, that is, how much an outcome of one

unit causes, not just correlates with, an outcome of another unit.

In this paper, we study the spatial diffusion of hate crimes against refugees in Germany.

Facing the biggest refugee crisis since the Second World War, Germany has recently registered

more than 1 million asylum applications, making them the largest refugee-hosting country in

Europe (United Nations High Commissioner for Refugees., 2017). During this time period, the

number of hate crimes against refugees has substantially increased, a close to 200% increase

from 2015 to 2016. A clear, descriptive pattern is that the incidence of hate crimes was spatially

clustered and the number grew over time as waves (see Section 2). However, what is the causal

process behind this dynamic spatial pattern? Understanding the causal impact of hate crime

diffusion is of policy and scientific interest to prevent the further spread of hate crimes.

Despite its importance, identification of causal diffusion effects, also known as peer ef-

fects, contagion effects, or social influence, is challenging (Manski, 1993; VanderWeele and

An, 2013). Although commonly-used statistical methods, including spatial econometric mod-

els (e.g., Anselin, 2013), require the assumption of no omitted confounders, this assumption

is often untenable due to two well-known types of confounding; contextual confounding and

homophily bias (Ogburn, 2018). When there exist some unobserved contextual factors that

affect multiple units, we suffer from contextual confounding — we cannot distinguish whether

units affect one another through diffusion processes or units are jointly affected by the shared

unobserved contextual variables. Homophily bias arises when the spatial or network proximity

is affected by some unobserved characteristics. We cannot discern whether units close to one

another exhibit similar outcomes because of diffusion or because they selectively become closer

in space or networks with others who have similar unobserved characteristics. Emphasizing

concerns over these biases, influential papers across disciplines criticize existing observational

diffusion studies (e.g., Cohen-Cole and Fletcher, 2008; Lyons, 2011; Angrist, 2014). In fact,
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causal diffusion effects are often found to be overestimated by a large amount, for example, by

300 – 700% (Aral et al., 2009; Eckles and Bakshy, 2017). Shalizi and Thomas (2011) argue that

it is nearly impossible to credibly estimate causal diffusion effects from observational studies

by relying on the conventional assumption of no omitted confounders.

To address this long-standing challenge, we examine identification of causal diffusion effects

using placebo outcomes — variables known to be not causally related to the treatment variable.

In this paper, we show that a lagged dependent variable is a general, valid placebo outcome

under a new assumption of structural stationarity, which formalizes diffusion processes with

a nonparametric structural equation model (NPSEM) and its corresponding causal directed

acyclic graph (DAG) (Pearl, 2000; Ogburn and VanderWeele, 2014). In particular, by extend-

ing a class of dynamic causal DAGs (Dean and Kanazawa, 1989; Pearl and Russell, 2001) to

the diffusion setting, we assume that the underlying NPSEM has recursive causal structure

over time, while we can leave unspecified how effects of each variable change over time. That

is, the structural stationarity assumption requires the existence of causal relationships among

variables — not the effect or sign of such relationships — to be stable over time. Instead of

simply assuming the validity of placebo outcomes, we clarify the importance of structural sta-

tionarity to transparently choose and justify placebo outcomes for identifying causal diffusion

effects.

Under structural stationarity, we first develop a statistical test that uses a lagged de-

pendent variable as a placebo outcome to detect a wide class of biases, including contextual

confounding and homophily bias (Section 4.2). It assesses whether a lagged dependent variable

is conditionally independent of the treatment variable. We prove statistical properties of the

test based on a new theorem, which states that under structural stationarity, the no omitted

confounders assumption is equivalent to the conditional independence of a lagged dependent

variable and the treatment variable.

In addition, we propose a bias-corrected estimator that can directly remove biases under

an additional causal assumption (Section 4.3). In its basic form, it subtracts the bias detected

by the placebo test from a biased estimator. We prove unbiasedness of this estimator under an

assumption that the effect and imbalance of unobserved confounders are constant over time.

We describe its connection to the widely-used difference-in-differences estimator (Angrist and

Pischke, 2008; Sofer et al., 2016).

Applying the proposed methods to fine-grained geo-coded hate crime data, we estimate the

causal diffusion effect of hate crimes against refugees in Germany (Section 5). In contrast to

existing studies (Braun, 2011; Jäckle and König, 2016), we first find that the spatial diffusion
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effect is small when averaging over all counties. By removing contextual confounding that

previous studies have suffered from, we avoid overestimation of the causal diffusion effect.

Then, we extend this analysis by considering types of counties that are more susceptible to

the diffusion of hate crimes. This further investigation shows that the spatial diffusion of hate

crimes is concentrated in counties with a higher proportion of school dropouts, if any.

Related Literature. This article builds on a growing literature of causal diffusion effects

(Shalizi and Thomas, 2011; Goldsmith-Pinkham and Imbens, 2013; Ogburn, 2018).1 In par-

ticular, several papers develop methods specifically for network data. Some studies (e.g.,

Bramoullé et al., 2009; O’Malley et al., 2014; An, 2015) propose to use instrumental variables

to examine causal diffusion effects (a.k.a., peer effects) in a network. McFowland III and Shalizi

(2021) propose a consistent estimator of causal peer effects, which adjusts for estimated latent

homophilous attributes in settings where the data generating process is linear and the network

grows according to either a stochastic block model or a continuous space model. While these

papers are powerful for analyzing causal diffusion effects in networks, these methods are not

directly applicable to our application of the spatial diffusion of hate crimes. In contrast, our

approach is applicable to spatial data as well as to network data.

This paper also draws upon emerging literature of negative controls (Lipsitch et al., 2010).

This paper extends recent studies using negative controls in panel data settings (Sofer et al.,

2016; Miao and Tchetgen Tchetgen, 2017) to identification of causal diffusion effects. Our work

is different from two recent papers utilizing negative controls. Egami and Tchetgen Tchetgen

(2021) propose a framework for using double negative controls (negative control outcome and

exposure variables) for identification and estimation of causal peer effects in the presence of

uncontrolled network confounding, while taking into account network dependence. Liu and

Tchetgen Tchetgen (2020) use a negative control exposure variable. Unlike these two papers,

our paper relies on a placebo outcome (a.k.a., negative control outcome), and thus, both the

placebo test and the bias-corrected estimator are different. Second, while both papers focus on

the two-period network data, we focus on panel data with both network and spatial settings

and analyze the spatial diffusion of hate crimes in our application. To accommodate this

generality, we introduced structural stationarity, which is not exploited in the other work.

Finally, our approach based on causal DAGs and corresponding NPSEM is different and

complementary to an alternative approach based on chain graphs. Recent papers (Tchet-

1Related but different literature is on causal inference with interference. The difference is that while inter-

ference focuses primarily on the causal effect of others’ treatments, diffusion (a.k.a, peer and contagion effects)

considers the causal effect of others’ outcomes (Ogburn and VanderWeele, 2014). See Halloran and Hudgens

(2016) for a review of the interference literature.
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gen Tchetgen et al., 2020; Ogburn et al., 2020) discuss the difference between chain graphs

and causal DAGs, and show the utility of chain graphs, especially when researchers are inter-

ested in characterizing equilibrium relationships between units in networks using cross-sectional

data. Our approach is useful when we are interested in learning about causal diffusion effects

— how units affect other units over time step by step — using panel data. This is exactly the

setup of our motivating application, where we want to estimate how hate crimes spread across

space over time in Germany.

2 A Motivating Empirical Application:

Spatial Diffusion of Hate Crimes against Refugees

Research across the social sciences has shown that many types of violence are contagious

(Wilson and Kelling, 1982; Myers, 2000). One small act of violence can trigger another act of

violence, which again induces another, and can lead to waves of violence. Without taking into

account how violent behaviors spread across space, it is difficult to explain when, where, and

why some areas experience violence and to prevent the further spread of violence.

In this paper, we investigate the spatial diffusion of hate crimes against refugees in Ger-

many, one of the most pressing problems in the country. Over the last few years, Germany

has experienced a record influx of refugees, and during the same time period, the number

of hate crimes against refugees has increased substantially. Our primary data source of hate

crimes is a project, Mut gegen rechte Gewalt (courage against right-wing violence), by the

Amadeu Antonio Foundation and the weekly magazine Stern, which has been documenting

anti-refugee violence in Germany since the beginning of 2014. The dataset we analyze in this

paper is compiled by Dancygier et al. (2020), who extended this hate crime data by merging

in other variables, such as the number of refugees, the population size, a proportion of school

dropouts and unemployment rates, collected from the Federal Statistical Office in Germany.

Figure 1 (a) reports the number of physical attacks against refugees each month, from the

beginning of 2015 to the end of 2016. While there were about 15 hate crimes on average in

each month of 2015, this rose to more than 40 in 2016, a close to 200% increase. Figure 1 (b)

presents the spatial patterns over the two years. Two empirical patterns are worth noting.

First, hate crimes were spatially clustered in East Germany. Second, the number of counties

that experience hate crimes grew over time as waves. This dynamic spatial pattern is consistent

with the spatial diffusion theory, which argues that hate crimes diffuse from one county to

another spatially proximate county over time (Myers, 2000; Braun, 2011). Indeed, Jäckle and

König (2016) found that the incidence of hate crimes in one county predicts that of hate crimes
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Figure 1: Temporal and Spatial Patterns of Hate Crimes in Germany. Note: The left figure

shows the number of physical attacks each month. In the middle and right figures, we show the number

of physical attacks in each county in 2015 and 2016, respectively. Each of 402 counties is colored in

white, blue, orange, or red if the number of hate crimes in a given year is less than or equal to 1, 5, 10,

or greater than 10, respectively.

in its spatially proximate counties using the data from Germany in 2015.

However, it is challenging to estimate the causal impact of this spatial diffusion process

because there exist well-known concerns of contextual confounding: many unobserved con-

founders can be spatially correlated. For example, the number of refugees increased substan-

tially during this period and is also spatially correlated. Even if we collect a long list of

covariates, it is difficult to assess whether a selected set of control variables is sufficient for

removing contextual confounding. To address this type of pervasive concern over bias, we

develop a placebo test to detect bias and a bias-corrected estimator to remove bias. The main

empirical analysis appears in Section 5.

3 Setup for Causal Diffusion Analysis

Causal diffusion, also known as peer and contagion effects, refers to a process in which an

outcome of one unit influences an outcome of another unit over time (Shalizi and Thomas,

2011; VanderWeele et al., 2012). This section introduces a setup for analyzing such causal

diffusion. We define the average causal diffusion effect and then describe challenges for its

identification.

3.1 Notations and Definitions

Consider n units over T time periods. Let Yit be the outcome for unit i at time t for i ∈

{1, . . . , n} and t ∈ {0, 1, . . . , T}. Use Yt to denote a vector (Y1t, . . . , Ynt), which contains the
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outcomes at time t for n units. To encode spatial or network connections between these n

units, we follow the standard spatial statistics literature (Anselin, 2013) and use a distance

matrix W where W can be an asymmetric, weighted matrix. In the motivating application,

it is of interest to estimate how much hate crimes in one county diffuse to other spatially

proximate counties. Here, the distance matrix W could encode physical distance between

counties where Wij might be an inverse of the distance between district i and j. In network

diffusion settings, Wij could represent a directed tie, e.g., whether unit i follows unit j in a

Twitter network. Define neighbors Ni to be other units that are connected with a given unit

i, i.e., Ni ≡ {j : Wij 6= 0}. In spatial diffusion analysis, researchers often assign 0 to Wij when

the distance between two units is greater than a certain threshold, e.g., 100 km. We denote

the outcome variables at time t of unit i’s neighbors as YNi,t ≡ {Yjt : j ∈ Ni}.

In causal diffusion analysis, we are interested in how an outcome of one unit is affected by

the outcomes of neighbors over time, that is, the causal effect of neighbors’ outcomes at the

previous time points YNi,t−1 on Yit. In principle, it is possible to perform causal inference

by defining a multivariate treatment variable YNi,t−1. However, in practice, we often make a

dimension-reducing assumption, known as the exposure mapping (Aronow and Samii, 2017),

to define the treatment variable. In particular, we define the treatment variable Dit at time t

as a function of relevant neighbors’ outcomes at time t−1, Dit ≡ φ(YNi,t−1) ∈ R, where φ(·) is

a function specified by researchers based on their substantive interest. In the spatial statistics

literature (Anselin, 2013), researchers have focused on the weighted average of the neighbors’

outcomes Dit = W>
i Yt−1 as the treatment variable. Following this practice, we examine the

treatment variable Dit = W>
i Yt−1 for concrete presentation throughout the paper, but the

methodologies in this paper can be applied to other definitions of exposure mapping φ as well.

With this definition of the treatment, we can define the potential outcome (Neyman, 1923;

Rubin, 1974; Robins, 1986). Yit(d) is the potential outcome variable of unit i at time t if the

unit receives the treatment Dit = d where d ∈ Dt and Dt is the support of Dit. Throughout

the paper, we assume the standard consistency assumption linking observed and potential

outcomes: Yit = Yit(Dit).

We are interested in the average causal diffusion effect (ACDE) at time t, which is defined

as the average causal effect of the treatment variable Dit on the outcome at time t (Ogburn

and VanderWeele, 2014; Ogburn, 2018). It is the comparison between the potential outcome

under a higher value of the treatment Dit = dH and the potential outcome under a lower value

of the treatment Dit = dL.
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Definition 1 (Average Causal Diffusion Effect)

The average causal diffusion effect (ACDE) at time t is defined as,

τt(d
H , dL) ≡ E[Yit(d

H)− Yit(dL)], (1)

where dH and dL are two constants specified by researchers.

For example, the ACDE could quantify how much the risk of having hate crimes in the next

month changes if we see more hate crimes in neighboring counties this month. This captures

how much hate crimes diffuse across space over time. An important related causal estimand

is the time-average ACDE, defined as,

τ(dH , dL) ≡ 1

T

T∑
t=1

τt(d
H , dL). (2)

Because identification of this time-average ACDE follows from the ACDE, we focus on the

ACDE unless otherwise noted.

3.2 Identification under No Omitted Confounders Assumption

We now consider a widely used identification assumption of no omitted confounders and explain

pervasive concerns about its violation.

The no omitted confounders assumption states that all relevant confounders are observed,

and researchers select them as an adjustment set. Formally, the no omitted confounders

assumption states that the potential outcomes at time t are independent of a joint distribution

of neighbors’ outcomes at time t− 1 given an adjustment set.

Assumption 1 (No Omitted Confounders)

For i = 1, 2, . . . , n,

Yit(d) ⊥⊥ YNi,t−1 | Cit, (3)

for all d ∈ Dt where Dt is the support of Dit. Cit can only include variables not affected

YNi,t−1. An overline clarifies that adjustment set Cit can include variables not only measured

at time t but also those measured before time t.

Under this assumption of no omitted confounders (Assumption 1) and the standard positivity

assumption described below, the ACDE is identified as follows.

τt(d
H , dL) =

∫
C

{
E[Yit|Dit = dH ,Cit = c]− E[Yit|Dit = dL,Cit = c]

}
dFCit

(c), (4)

where FCit
(c) is the cumulative distribution function of Cit. The standard positivity assump-

tion states that Pr(Dit = dH |Cit = c) > 0 and Pr(Dit = dL|Cit = c) > 0 for i = 1, . . . , n

and all c ∈ C where C is the support of Cit. We can estimate the ACDE by estimating the

conditional expectation E[Yit|Dit,Cit] and then averaging it over the empirical distribution of

the adjustment set Cit.
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Remark. Note that Assumption 1 is stronger than Yit(d) ⊥⊥ Dit | Cit, which is sufficient

for identification. The advantage of using Assumption 1 is twofold: (1) we can use the same

assumption for other definitions of the treatment based on different φ, and (2) we can develop

a formal placebo test, the central topic of this paper we discuss in Section 4. 2

Although many empirical studies of diffusion make the assumption of no omitted con-

founders, it is widely known that the assumption is often questionable in practice (Manski,

1993; Shalizi and Thomas, 2011; VanderWeele and An, 2013). This concern is pervasive mainly

because it implies the absence of two well-known types of biases: contextual confounding and

homophily bias. Contextual confounding – the primary focus of the spatial diffusion literature

– can exist when units share some unobserved contextual factors. For example, in the moti-

vating application of hate crime diffusion, the risk of having hate crimes is likely to be affected

by some economic policies, which often affect multiple counties at the same time. In this case,

researchers might observe spatial clusters of hate crimes even without diffusion.

Another well-known type of bias is homophily bias – the main concern in the network

diffusion literature. This bias arises when units become connected due to their unobserved

characteristics. For example, voters who are connected to each other can have similar political

opinions without any diffusion or social influence because people who have similar political

views might become friends in the first place (Fowler et al., 2011). We discuss the causal DAG

representation of these biases when we introduce our proposed methods in Section 4.

4 The Proposed Methodology

In this section, we examine identification of causal diffusion effects under an alternative as-

sumption of structural stationarity. After introducing this assumption (Section 4.1), we first

develop a statistical placebo test to detect a wide range of biases (Section 4.2) and then propose

a bias-corrected estimator (Section 4.3).

4.1 Structural Stationarity

We use a causal directed acyclic graph (causal DAG) and its corresponding non-parametric

structural equation model (NPEM) (Pearl, 2000) to explicitly examine potential violations of

the no omitted confounders assumption. A causal DAG is a set of nodes (V1, . . . , VK), and

directed edges among nodes such that the graph has no cycles. For each node Vk on the

graph, the corresponding random variable is given by its non-parametric structural equation

Vk = fk(PA(Vk), εk) where PA(Vk) are the parents of Vk on the graph, and the εk are mutually

independent. In contrast to a linear structural equation model, non-parametric structural

equations are entirely general — Vk may depend on any function of its parents and εk. The
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non-parametric structural equations encode counterfactual relationships between the variables

that are represented on the graph. We review basic terminologies for NPSEM and DAGs in

Appendix B.

One key challenge of using NPSEMs in practice is that it is often difficult to specify one

NPSEM that is valid and at the same time, general enough to accommodate various applied

questions. This is especially difficult in the diffusion settings where units can be affected by

other units over time. Thus, instead of specifying one particular NPSEM, we assume a class

of NPSEMs that satisfy certain regularity conditions, what we call structural stationarity.

Intuitively, structural stationarity assumes that the existence of causal relationships be-

tween variables, not the effect or sign of such relationships, to be stable over time. This can be

seen as an extension of dynamic causal DAGs (Dean and Kanazawa, 1989; Pearl and Russell,

2001) to the diffusion setting. We first formally define structural stationarity in general, and

provide examples of NPSEMs below.

Definition 2 (Structural Stationarity)

Consider a NPSEM. Among random variables that have more than one child or have at least

one parent, distinguish two types; the time-varying variable Ait and the time-invariant variable

Bi. Then, a NPSEM is said to satisfy structural stationarity if random variables in the NPSEM

satisfy the following conditions.

(2.1) Ait ∈ PA(Ai,t+1) for i ∈ {1, . . . , n} and t = 0, . . . , T − 1.

(2.2) For i, i′ ∈ {1, . . . , n}, if there exist two integers t and q such that Ait ∈ PA(Ãi′,t+q),

then Ait′ ∈ PA(Ãi′,t′+q) for all t′ = 0, . . . , T − q.

(2.3) For i, i′ ∈ {1, . . . , n}, if there exists integer t such that Bi ∈ PA(Ai′t),

then Bi ∈ PA(Ai′t′) for all t′ = 0, . . . , T.

Example. We first consider a simple NPSEM that captures unmeasured contextual con-

founding. For i ∈ {1, . . . , n} and t ∈ {1, . . . , T}, suppose data are generated by sequentially

evaluating the following set of equations:

(Outcome variable) Yit = fY (YNi,t−1, Yi,t−1,Lit, L̃i,Ug[i],t, ε
Y
it )

(Time-varying Observed variables) Lit = fL(Li,t−1, Yi,t−1, Ug[i],t−1, εεε
L
it),

(Time-invariant Observed variables) L̃i = f
L̃

(Yi,0, Ug[i],0, εεε
L̃
i ),

(Time-varying Unobserved variables) Ugt = fU (Ug,t−1, εεε
U
gt),

(5)

where (εYit , εεε
L
it, εεε

L̃
i , εεε

U
gt) are unobserved exogenous errors. We use g to denote an unobserved

context to which units belong, and use g[i] to represent a context to which unit i belongs. Thus,

Ug[i],t is an unobserved contextual variable for unit i, which induces non-causal associations
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Figure 2: Illustration of Structural Stationarity. Note: Six nodes Yit represent outcome variables

for two individuals i ∈ {1, 2} over three time periods t ∈ {0, 1, 2}. Three nodes Gt are contextual

variables for t ∈ {0, 1, 2}. In the first panel, the causal structure between variables Y and G are stable

over time. In the second panel, variable G has no effect on Y at t = 2 and thus structural stationarity

is violated.

between Yit and YNi,t−1 and violates the no omitted confounders assumption. The left panel

of Figure 2 visualizes an instance of the NPSEM (5), while omitting observed variables for

visual simplicity. Structural stationarity is violated in the right panel of Figure 2 because the

causal relationships between outcomes and unmeasured context factors are different before

and after time t = 1.

Condition 2.1 of Definition 2 requires that all time-varying variables that have at least one

parent be affected by their own lagged variables. In NPSEM (5), outcomes Yit, time-varying

observed variables Lit, and time-varying unobserved variables Ugt are all affected by their

own lagged variables. This condition is more plausible when the time intervals are shorter.

Condition 2.2 means that if two time-varying variables have a child-parent relationship at

one time period, the same causal relationship should exist for all other time periods. For

example, outcome Yit is affected by unobserved contextual factor Ug[i],t, and this child-parent

relationship exists for all t ∈ {1, . . . , T}. Finally, Condition 2.3 requires that if a time-invariant

variable is a parent of a time-varying variable at one time period, the same child-parent

relationship should exist at all other time periods. For example, outcome Yit is affected by

time-invariant variables L̃i, and this child-parent relationship exists for all t ∈ {1, . . . , T}.

The last two requirements are the core – the existence of causal relationships should be

stable over time. Importantly, the effect of each variable can change over time; the only

requirement is the time-invariant existence of the causal relationships. 2
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Remark. Structural stationarity is satisfied in a more general NPSEM as well. First, vari-

ables can be affected not only by one-time lag but also by longer-time lags. For example,

outcome Yit can be affected not only by the neighbors’ outcomes at the last period YNi,t−1

but also by the neighbors’ outcomes at two periods before YNi,t−2. Second, each variable can

be not only affected by other variables within each unit but also by other variables of neighbors.

For example, outcome Yit can be affected by LNi,t−1 and UNi,t−1. We provide an additional

example in Appendix C. 2

Structural stationarity can accommodate many applied diffusion questions. Indeed, struc-

tural stationarity is often an implicit assumption researchers make in applied contexts. When

analyzing panel data, analysts often adjust for the same set of confounders with only changing

time indices (e.g., adjust for unemployment rates in 2015 when the outcome is the incidence of

hate crimes in 2015, adjust for unemployment rates in 2016 when the outcome is the incidence

of hate crimes in 2016, and so on). This implicitly assumes that the underlying NPSEM is

stable and therefore, types of confounders they choose are also the same over time (only with

the appropriate change in time indices).

Structural stationarity has also been a natural requirement for causal DAGs examined

in causal diffusion analysis. In fact, causal DAGs in seminal papers about causal diffusion

effects (Shalizi and Thomas, 2011; O’Malley et al., 2014; Ogburn and VanderWeele, 2014)

satisfy structural stationarity. Causal DAGs in the causal discovery literature often impose

a similar but stronger condition (Danks and Plis, 2013; Hyttinen et al., 2016). They often

assume that variables are affected only by one-time lag (also known as the first-order Markov

assumption) and this structure is time-invariant. In contrast, structural stationarity allows for

any higher-order temporal dependence (see Condition 2.2 of Definition 2).

Structural stationarity is violated when the underlying causal structure changes at some

time. For example, if a new time-varying confounder arises in the middle of the time periods

we analyze, this will violate structural stationarity. If researchers know the time when the

underlying structure changes, we can still make use of the structural stationarity assumption

separately, before and after this time point. However, it is important to emphasize that

structural stationarity is an untestable assumption as many other assumptions necessary for

causal inference. Therefore, in general, structural stationarity is less plausible in applications

where we expect the underlying diffusion structure is changing over time.

4.2 Placebo Test to Detect Bias

Under structural stationarity, we now propose a placebo test – using a lagged dependent

variable as a general placebo outcome – that can detect a wide class of biases, including
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contextual confounding and homophily bias. This placebo test can assess the validity of the

confounder adjustment, thereby improving the credibility of identification of causal diffusion

effects.

4.2.1 Equivalence Theorem

To formally prove a property of a placebo test, we first make the structural stationarity

assumption.

Assumption 2

For i ∈ {1, . . . , n} and t ∈ {1, . . . , T}, we assume that data – both observed and unobserved

variables – are generated by sequentially evaluating a NPSEM that satisfies structural station-

arity. We also assume the distribution of observed and unobserved variables is faithful2 to this

underlying NPSEM.

Two points are worth noting about Assumption 2. First, it requires that the underlying

data is generated by a NPSEM that satisfies the structural stationarity. Importantly, how-

ever, it does not require researchers to specify a particular NPSEM. This can be important in

practice where researchers have domain knowledge to justify that the existence of causal rela-

tionships is time-invariant but they lack precise knowledge necessary for justifying a particular

NPSEM. Second, we also require faithfulness (Spirtes et al., 2000) to an underlying NPSEM.

This is important because, if the data distribution is not faithful to the underlying NPSEM,

an unblocked backdoor path might induce no dependence, which we cannot detect from the

data. This faithfulness assumption is commonly made in the causal discovery literature, and

readers can find more details in Spirtes et al. (2000).

Under Assumption 2, we show the assumption of no omitted confounders is equivalent to

the conditional independence of the simultaneous outcomes given a placebo set defined below.

Theorem 1 (Equivalence between No Omitted Confounders Assumption and Conditional

Independence of Simultaneous Outcomes) Under Assumption 2, for covariates Cit that are

not affected by YNi,t−1,

Yit(d) ⊥⊥ YNi,t−1 | Cit ⇐⇒ Yi,t−1 ⊥⊥ YNi,t−1 | C
P
it , (6)

where a placebo set C
P

is defined as

C
P
it ≡ {Cit,C

(−1)
it ,YNi,t−2} \Des(Yi,t−1), (7)

where C
(−1)
it is a lag of the time-varying variables in Cit, YNi,t−2 is a lag of the treatment

variable, and Des(Yi,t−1) is a descendant of Yi,t−1, i.e., variables affected by Yi,t−1.

2Faithfulness is defined as follows. If a distribution is faithful to a NPSEM, variables A and B are independent

if and only if the variables are d-separated in the corresponding causal directed acyclic graph (Spirtes et al.,

2000).
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The proof of Theorem 1 is in Appendix A.1.

In general, the assumption of no omitted confounders (the left-hand side of equation (6))

is not testable because it contains the potential outcomes Yit(d), which are inherently unob-

servables. This theorem shows that, under Assumptions 2, the assumption of no omitted

confounders (the left-hand side) is equivalent to the conditional independence of the ob-

served outcome of individual i and her neighbors’ outcomes at the same time period given

a placebo set (the right-hand side). Because this right-hand side is observable and testable,

this theorem directly implies that we can statistically assess the assumption of no omitted

confounders by the placebo test of the conditional independence of the simultaneous outcomes

Yi,t−1 ⊥⊥ YNi,t−1 | C
P
it .

The basic idea behind the theorem is as follows: under the structural stationarity, back-

door paths between the main outcome and the treatment are similar to those between the

lagged dependent variable and the treatment. The difference between adjustment set C and

placebo set C
P

is to formally guarantee that unblocked back-door paths between the main

outcome and the treatment are the same (from a causal graph perspective) to those between

the placebo outcome and the treatment. To derive this placebo set, we only need to know

which variables in the adjustment set are time-varying and which variables are affected by

outcomes at time t. The former information is often readily available, and the latter one is the

same as the information used to avoid post-treatment bias in the standard causal inference

settings.

Every causal inference method requires some untestable assumption. Many existing ap-

proaches directly rely on the no omitted confounders assumption (Assumption 1), which is

untestable and is also often untenable in practice. In contrast, Theorem 1 makes the no omit-

ted confounders assumption testable under an alternative assumption of structural stationarity

(Assumption 2), which is untestable and yet, can be more defensible in many applied settings.

4.2.2 Illustrations with Causal DAGs

Although the proposed placebo test is applicable to any NPSEMs and corresponding causal

DAGs that satisfy structural stationarity, we consider a causal DAG in Figure 3 (a) as one

concrete example. Suppose we are interested in the ACDE of Y11 on Y22 where Y11 is the

treatment variable (blue), Y22 is the outcome variable (red), and the causal arrow of interest

Y11 → Y22 is colored blue. The placebo outcome Y21 is colored orange.

Based on this causal DAG in Figure 3 (a), Table in Figure 3 (b) shows four different

scenarios: no bias, contextual confounding, homophily bias, and both types of biases. For each

set of control variables, the placebo test checks conditional independence, Y11 ⊥⊥ Y21 | C
P
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Y20

Y11

Y21

Y12

Y22

(a) Example of Placebo Test

C C
P

Placebo Test

No Bias Y21, U2, G2 Y20, Y10, U2, G2, G1 Accept

Contextual
Y21, U2 Y20, Y10, U2 Reject

Confounding

Homophily Bias Y21, G2, G1 Y20, Y10, G2, G1, G0 Reject

Both Y21, Y20 Y20, Y10 Reject

(b) Adjustment and Placebo Sets

Figure 3: Illustration of Placebo Test. Note: A DAG in (a) has nine variables in a DAG of Figure 2

in addition to two nodes Ui representing individual-level characteristics for i ∈ {1, 2}, and variable W

indicating the connection of two individuals. We focus on the ACDE of Y11 on Y22 where Y11 is the

treatment variable (blue), Y22 is the outcome variable (red), and the causal arrow of interest Y11 → Y22
is colored blue. The placebo outcome Y21 is colored orange.

where we derive a placebo set C
P

from a chosen control set C using equation (7). These

scenarios show how the placebo test detects biases by exploiting structural stationarity.

First, when we control for three variables {Y21, U2, G2}, the ACDE of interest is identified

(“No Bias”). Without knowledge of the entire causal DAG, we can assess the absence of bias

by implementing the placebo test. Following equation (7), we derive a placebo set C
P

=

{Y20, Y10, U2, G2, G1} and then the placebo test checks Y11⊥⊥Y21|C
P
. In Figure 3 (a), there is

no unblocked back-door path between Y11 and Y21, and the conditional independence holds as

Theorem 1 implies.

Second, we consider a typical form of contextual confounding. When we control for two

variables {Y21, U2}, the ACDE is not identified due to a back-door path (Y11 ← G1 → G2 →

Y22). We now verify that the placebo test correctly detects this bias. We first derive a placebo

set as C
P

= {Y20, Y10, U2} and then assess whether there is any unblocked back-door path

between Y11 and Y21. In fact, we correctly reject the placebo test; Y11 6⊥⊥ Y21|C
P

due to

a back-door path (Y11 ← G1 → Y21). In Appendix, we also provide an illustration with

homophily bias.

4.2.3 Parametric Placebo Test via Spatial Autoregressive Model

As Theorem 1 is nonparametric, researchers can employ a variety of non-, semi-parametric, or

parametric conditional independence tests to implement the proposed placebo test. Among

14



many options, one practical approach is a parametric test based on the spatial autoregressive

(SAR) model (e.g., Anselin, 2013). For example, when outcomes are continuous, we can

implement the placebo test by the following linear spatial autoregressive model.

Yi,t−1 = α0 + δW>
i Yt−1 + γ>0 C

P
it + εi,t−1, (8)

where W>
i Yt−1 ≡ Dit is the treatment variable, C

P
it is a placebo set, and εi,t−1 is an error

term. In the motivating application (Section 5), we employ logistic spatial autoregressive

model in a similar way. To account for spatial autocorrelation of errors, we rely on the spatial

heteroskedasticity and autocorrelation consistent (spatial HAC) variance estimator by Conley

(1999) to compute standard errors.

Theorem 1 implies that the placebo outcome Yi,t−1 is conditionally independent of the

treatment variable if the assumption of no omitted confounders holds. Therefore, the spatial

autoregressive coefficient δ serves as a test statistic of the placebo test. By testing whether

this spatial autoregressive coefficient is zero, researchers can assess the no omitted confounders

assumption and thus detect biases, including contextual confounding and homophily bias.

In Appendix D.1, we investigate the statistical power of the proposed placebo test through

simulation studies and show that its power is comparable to a theoretical upper bound.

This use of the SAR model as a placebo test differs from existing approaches in the spatial

econometrics literature that are designed to capture spatial correlations (e.g., Anselin, 2013).

While researchers conventionally interpret the spatial autoregressive coefficient as the strength

of the spatial correlation, the proposed placebo test uses the spatial autoregressive coefficient

to detect biases rather than to estimate diffusion effects. For the estimation of the ACDE, we

estimate the conditional expectation Ê[Yit | Dit,Cit] and then use the identification formula

in equation (4).

Remark. It is important to note that if the parametric assumptions of the model are vio-

lated, the spatial autoregressive coefficient in equation (8) can be zero even when unmeasured

confounding remains. Like any other statistical tests, a specific parametric placebo test can

fail if its underlying parametric assumptions do not hold. A key advantage of the proposed

approach is that the equivalence theorem (Theorem 1) is nonparametric. The theorem implies

that when there exist no omitted confounders, the placebo outcome and the treatment are

conditionally independent in any parametric and nonparametric tests. Therefore, in prac-

tice, researchers can also verify the conditional independence of the placebo outcome and the

treatment variable using additional non- or semiparametric conditional independence tests. 2

15



4.3 Bias-Corrected Estimator

If the placebo test detects bias, one may want to collect more data and improve the selection

of the adjustment set. This strategy might, however, be infeasible in many applied settings.

To help researchers in such common situations, this section considers how to correct biases by

introducing an additional assumption. We start with a simple example of linear models (Sec-

tion 4.3.1) and then provide general results in Sections 4.3.2 and 4.3.3. We provide simulation

evidence in Appendix D.2.

4.3.1 An Example with Linear Models

To develop an intuition for a bias-corrected estimator, we first consider a simple example with

linear models. We assume here that a selected adjustment set is time-invariant and the same

as its corresponding placebo set. A general result is provided in the following subsections.

Suppose we fit a linear model in which we regress the outcome at time t on the treatment

variable and the selected adjustment set.

Yit = α+ βDit + γ>Cit + ε̃it, (9)

where Dit is the treatment variable, Cit is the selected adjustment set, and ε̃it is an error

term. If the assumption of no omitted confounders (Assumption 1) holds, β̂ × (dH − dL) is

an unbiased estimator of the ACDE given that the linear model specification is correct. In

contrast, when the no omitted confounders assumption is violated, this estimator is biased.

We would like to assess whether the assumption of no omitted confounders holds and also

correct biases, if any.

To assess the assumption of no omitted confounders, suppose we run a parametric placebo

test using the following linear spatial autoregressive model as in equation (8).

Yi,t−1 = α0 + δDit + γ>0 C
P
it + εi,t−1,

where C
P
it is a placebo set and εi,t−1 is an error term. If the assumption of no omitted

confounders holds, the spatial autoregressive coefficient δ should be zero (Theorem 1). In

contrast, if the assumption of no omitted confounders does not hold, an estimated coefficient

δ̂ then serves as a bias-correction term.

In this simple example, a proposed bias-corrected estimator is given by subtracting the

bias-correction term δ̂ from an original biased estimator β̂.

τ̂BC(dH , dL) ≡ (β̂ − δ̂)× (dH − dL). (10)

This bias-corrected estimator is unbiased for the ACDE for the treated under an additional

causal assumption we discuss in detail in the next subsection (Assumption 3). Note that when
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the assumption of no omitted confounders holds, the expected value of δ̂ is zero, meaning no

bias correction.

4.3.2 Assumption

To describe a general bias-corrected estimator, we begin by defining the average causal diffusion

effect for the treated (ACDT). We will show in Theorem 2 that the proposed bias-corrected

estimator is unbiased for the ACDT. The formal definition is as follows.

τHt (dH , dL) ≡ E[Yit(d
H)− Yit(dL) | Dit = dH ]. (11)

This is the average causal diffusion effect for units who received the higher level of the treat-

ment. This quantity could represent the causal diffusion effect of hate crimes for counties in a

higher risk neighborhood, i.e., dH% of neighboring counties had hate crimes in month t− 1.

To introduce necessary assumptions, we divide an adjustment set into three types of vari-

ables Cit ≡ {Xit,X∗it, X̃i} where (1) Xit, the time-varying variables that are descendants

of Yit, (2) X∗it, the time-varying variables that are not descendants of Yit, and (3) X̃i, the

time-invariant variables.

Without loss of generality, first define an unobserved confounder U such that the no omitted

confounder assumption holds conditional on Uit and the original adjustment set Cit, i.e.,

Yit(d
L) ⊥⊥ YNi,t−1 | Uit,Cit. For simpler illustrations, we assume here that this Uit is a

descendant of Yit (general results are in Appendix A.3). Theorem 1 then implies that observed

simultaneous outcomes are independent conditional on Ui,t−1 and C
P
it , i.e., Yi,t−1 ⊥⊥ YNi,t−1 |

Ui,t−1,C
P
it .

With this setup, we introduce an assumption necessary for the bias correction; the effect

and imbalance of unobserved confounders are constant over time. This is an extension of

structural stationarity (Assumption 2): while structural stationarity only requires that the

existence of causal relationships among outcomes and confounders be time-invariant, this ad-

ditional causal assumption requires that some of such causal relationships should have the

same effect size over time.

Assumption 3 (Time-Invariant Effect and Imbalance of Unobserved Confounder)

1. Time-invariant effect of unobserved confounder U : For all u1, u0,x and c,

E[Yit(d
L) | Uit = u1,Xit = x,C

B
it = c]− E[Yit(d

L) | Uit = u0,Xit = x,C
B
it = c]

= E[Yi,t−1 | Ui,t−1 = u1,Xi,t−1 = x,C
B
it = c]− E[Yi,t−1 | Ui,t−1 = u0,Xi,t−1 = x,C

B
it = c].

2. Time-invariant imbalance of unobserved confounder U : For all u,x and c,

Pr(Uit ≤ u | Dit = dH ,Xit = x,C
B
it = c)− Pr(Uit ≤ u | Dit = dL,Xit = x,C

B
it = c)
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= Pr(Ui,t−1 ≤ u | Dit = dH ,Xi,t−1 = x,C
B
it = c)− Pr(Ui,t−1 ≤ u | Dit = dL,Xi,t−1 = x,C

B
it = c).

where C
B
it ≡ {X∗it,X∗i,t−1, X̃i,YNi,t−1}.

Assumption 3.1 requires that the effect of unobserved confounders on the potential outcomes

be stable over time. This assumption is more plausible when we can control for a variety of

observed time-varying confounders Xit and Xi,t−1. However, this assumption might be violated

when the change in the effect of U is quick and cannot be explained by observed covariates

X. Suppose that the unemployment rate is the unobserved confounder in our motivating

application. This assumption then implies that the effect of the unemployment rate on the

incidence of hate crimes is the same over time. In the causal DAG in Figure 3, this means

that the effect of G2 on Y22 is the same as the effect of G1 on Y21.

Assumption 3.2 requires that the imbalance of unobserved confounders be stable over time.

In other words, the strength of association between the treatment variable and unobserved con-

founders is the same at time t and t− 1. Importantly, it does not require that the distribution

of confounders is the same across different treatment groups. Instead, it requires that the

difference between treatment groups be stable over time. For example, this means that an

association between the incidence of hate crimes in neighborhoods (treatment) and the unem-

ployment rate is stable over. In the causal DAG in Figure 3, this assumption implies that the

association between G2 and Y11 is the same as the one between G1 and Y11. This assumption

substantively means the stability of omitted confounder G.

In practice, both conditions are more likely to hold when the interval between time t and

t− 1 is shorter because Uit ≈ Ui,t−1 and Xit ≈ Xi,t−1. In particular, when all confounders are

time-invariant between time t and t−1, Assumption 3.2 holds exactly. Even when confounders

are time-varying, we can make these assumptions more plausible by adjusting for observed

time-varying confounders Xit and Xi,t−1.

In a special case where there is no descendant of Yit in the adjustment set, i.e., Xit =

Xi,t−1 = ∅, Assumption 3 is equivalent to the parallel trend assumption required for the stan-

dard difference-in-differences estimator (Angrist and Pischke, 2008). By allowing for time-

varying confounders, Assumption 3 extends the parallel trend assumption. It is also closely

connected to the change-in-change method (Athey and Imbens, 2006; Sofer et al., 2016). Specif-

ically, Assumption 3.2 (time-invariant imbalance) is a direct extension of Assumption 3.3 in

Athey and Imbens (2006) to the diffusion setting.

4.3.3 Estimator and Identification

We introduce a general bias-corrected estimator under Assumption 3. Intuitively, it subtracts

bias detected by the proposed placebo test from an estimator that we would use under the no
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omitted confounders assumption.

Definition 3 (Bias-Corrected Estimator)

A bias-corrected estimator τ̂BC is the difference between two estimators τ̂Main and δ̂Placebo.

τ̂BC ≡ τ̂Main − δ̂Placebo (12)

where

τ̂Main ≡
∫ {

Ê[Yit | Dit = dH ,Xit,C
B

it ]− Ê[Yit | Dit = dL,Xit,C
B

it ]
}
dF

Xit,C
B
it|Dit=dH (x, c),

δ̂Placebo ≡
∫ {

Ê[Yi,t−1 | Dit = dH ,Xi,t−1,C
B

it ]− Ê[Yi,t−1 | Dit = dL,Xi,t−1,C
B

it ]
}
dF

Xit,C
B
it|Dit=dH (x, c),

where Ê[·] is any unbiased estimator of E[·], and researchers can use regression, weighting,

matching or other techniques to obtain such an unbiased estimator. Note that both estimators

are marginalized over the same conditional distribution F
Xit,C

B
it |Dit=dH

(x, c).

This bias-corrected estimator consists of two parts, τ̂Main and δ̂Placebo. The first part is an

estimator unbiased for the ACDT under the no omitted confounders assumption. However,

τ̂Main suffers from bias when this identification assumption is violated. The purpose of the

second part δ̂Placebo is to correct this bias. It is closely connected to the proposed placebo

test; when the assumption of no omitted confounders holds, E[δ̂Placebo] = 0 and there is no

bias correction. When the assumption is instead violated, δ̂Placebo serves as an estimator of

the bias. We rely on V̂ar(τ̂Main) + V̂ar(δ̂Placebo) as a conservative variance estimator of the

bias-corrected estimator given that τ̂Main and δ̂Placebo are often positively correlated. In our

motivating application, we rely on the spacial heteroskedasticity and autocorrelation consistent

(spatial HAC) variance estimator by Conley (1999) to compute each variance, while accounting

for spatial autocorrelation of errors.

The theorem below shows that under Assumption 3, the bias-corrected estimator is unbi-

ased for the ACDT.

Theorem 2 (Identification with A Bias-Corrected Estimator) Under Assumption 3,

the proposed bias-corrected estimator is unbiased for the ACDT.

E[τ̂BC] = τHt (dH , dL).

The proof is in Appendix A.3. It is also true that this estimator is unbiased for the ACDT

when the no omitted confounders assumption holds. Through a simulation study calibrated to

the hate crime data, we show that the proposed bias-corrected estimator can reduce the bias

and root mean squared error even when the required time-invariance assumption (Assump-

tion 3) is slightly violated (Appendix D.2). We also introduce a sensitivity analysis method

in Appendix A.4 to investigate the robustness of the bias-corrected estimates to the potential

violation of the time-invariance assumption (Assumption 3).
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5 Empirical Analysis

Applying the proposed methods, we estimate the ACDE of hate crimes against refugees in

Germany. We begin with the setup of data analysis (Section 5.1) and then turn to estimation

of the ACDE (Section 5.2) and heterogeneous effects (Section 5.3).

5.1 Setup

As one of the most well-studied outcomes, we focus on physical attacks against refugees as the

main dependent variable. Formally, we define the outcome variable Yit to be binary, taking

the value 1 if there exists any physical attack against refugees at county i in month t, and

taking the value 0 otherwise. The outcomes are defined for 402 counties in Germany every

month from the beginning of 2015 to the end of 2016. Averaging over all counties in Germany

during this period, the sample mean of the outcome variable is 6.4%. This means that 6.4% of

counties experienced at least one physical attack in a typical month. In Saxony, a state with

the largest number of hate crimes, the sample mean of the outcome variable is 34%.

We use a distance matrix to encode the physical proximity between counties. In particular,

we construct an initial distance matrix W̃ using an inverse of the straight distance between

counties i and j as W̃ij . We then row-standardize the initial matrix W̃ and obtain a final

distance matrix W. For the outcome variable in month t, the treatment variable is defined

to be Dit ≡ W>
i Yt−1, the weighted proportion of neighboring counties that experience the

incidence of physical attacks in month t−1. The first causal quantity of interest is the ACDE,

which quantifies how much the probability of having hate crimes changes due to the increase

in the proportion of neighboring counties that have experienced hate crimes last month.

To investigate how the proposed methods detect and correct biases, we consider five dif-

ferent adjustment sets in order (summarized in Table 1). As the first adjustment set, we

include one-month lagged dependent and treatment variables. We also adjust for basic sum-

mary statistics of Wi, i.e., the number of neighbors and variance of Wi, in order to compare

observations with similar spatial characteristics. These lagged variables and basic summary

statistics of the spatial distance are sufficient for identification if the spatial diffusion is the

only mechanism through which neighboring counties exhibit similar outcomes. Then, as the

second adjustment set, we add two-month lagged dependent variables to see whether adjusting

for a longer history of past outcomes can reduce bias (e.g., Christakis and Fowler, 2013; Eckles

and Bakshy, 2017). The third adjustment set adds state fixed effects. Although the state

fixed effects are often excluded from existing studies (e.g., Jäckle and König, 2016), we show

how much these fixed effects help remove biases. Then, the fourth set adds a list of contextual

20



C1 Yi,t−1, Di,t−1, summary statistics of Wi(|Ni|,Var(Wi))

C2 C1 + Yi,t−2

C3 C2 + state fixed-effects

C4 C3 + contextual variables studied in the literature

C5 C4 + time trend (third-order polynomials)

Table 1: Five Different Adjustment Sets.

variables related to the number of refugees, demographics, education, general crimes, economic

indicators, and politics. Finally, the fifth set adjusts for the time trend using third-order poly-

nomials. We provide details of the five adjustment sets and the corresponding placebo sets in

Appendix E.

For the proposed placebo test, we rely on the structural stationarity assumption (Assump-

tion 2). For example, if discussions of the refugee crisis in newspapers, which we do not

measure, are confounders, structural stationarity requires that such discussions in newspapers

remain confounders throughout 2015 and 2016. Importantly, the placebo test is valid even

when the tone of discussions is changing over time (unmeasured time-varying confounders)

and the effect of discussions changes over time. For the bias-corrected estimator, the time-

invariance assumption (Assumption 3) requires a stronger assumption, similar to the difference-

in-differences literature (Athey and Imbens, 2006; Angrist and Pischke, 2008; Sofer et al., 2016),

that the effect of newspapers is stable over time and the imbalance of unobserved discussions

in newspapers is stable over time after adjusting for observed time-varying confounders.

5.2 Estimation of Average Causal Diffusion Effect

To estimate the ACDE, we use the following logistic regression to model the main outcome

variable Yit with the treatment variable and each of the five adjustment sets.

logit(Pr(Yit = 1 | Dit,Cit)) = α+ βDit + γ>Cit, (13)

where Dit is the treatment variable and Cit is a specified adjustment set. Under the assumption

of no omitted confounders, the difference in the estimated probabilities of Yit under Dit = dH

and Dit = dL serves as an estimator for the ACDE. In particular, we estimate the ACDE

that compares the following two treatment values; dH = 27%, the treatment received by the

average counties in Saxony (a state with the largest number of hate crimes) and dL = 0%,

none of the neighbors experiencing hate crimes (common for safe areas in West Germany).

Formally, τ̂ ≡
∫
{P̂r(Yit = 1 | Dit = 0.27,Cit)− P̂r(Yit = 1 | Dit = 0,Cit)}dFCit

(c).

To assess the no omitted confounders assumption, we also estimate the following placebo
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logistic regression.

logit(Pr(Yi,t−1 = 1 | Dit,C
P
it)) = α0 + ρDit + γ>0 C

P
it , (14)

where Yi,t−1 is the placebo outcome and C
P
it is a placebo set corresponding to the adjustment

set Cit. When the no omitted confounders assumption holds, Theorem 1 implies that ρ = 0.

We use the difference in the estimated probabilities of Yi,t−1 under Dit = dH and Dit = dL as a

test statistic of the placebo test. Formally, δ̂ ≡
∫
{P̂r(Yi,t−1 = 1 | Dit = 0.27,C

P
it)−P̂r(Yi,t−1 =

1 | Dit = 0,C
P
it)}dFC

P
it

(cP ).

To account for spatial and temporal autocorrelation of errors, we use the spatial HAC

variance estimator by Conley (1999) to compute standard errors by allowing for arbitrary

spatial dependence between units within 100 km and temporal dependence within units over

six months. As a robustness check, we also compute standard errors clustered at the state

level, which can allow for any spatial and temporal dependence between units within the same

state. The results are similar to those based on the spatial HAC variance estimator we report

below.

Figures 4 (a) and (b) present results from the placebo tests (equation (14)) and estimates

from the main model (equation (13)) with 95% confidence intervals, respectively. C1, C2, C3,

C4, and C5 refer to the five different adjustment sets we introduced before. When a given

adjustment set satisfies the no omitted confounders assumption, estimates from the placebo

tests should be close to zero. Figure 4 (a) shows that while the first four adjustment sets

are not sufficient, the fifth set (C5) successfully adjusts for confounders; a placebo estimate is

close to zero and its 95% confidence interval covers zero. It is not enough to adjust for lagged

dependent variables and contextual variables and it is critical to adjust for the time trend

flexibly.

On the basis of these results from the placebo tests, we can now investigate estimates of

the ACDE from the main model (equation (13)) in Figure 4 (b). For the first two cases (C1

and C2), estimates are as large as 5 percentage points, but the placebo tests suggest that

these estimates are heavily biased. Similarly, while the next two cases show point estimates

of around 2 percentage points, they are also likely to be biased. When we focus on the fifth

adjustment set, which produces a placebo estimate close to zero, a point estimate of the ACDE

is smaller than 1 percentage point, and its 95% confidence interval covers zero. The comparison

between this more credible estimate and the one from the fourth set shows that an estimate

of the ACDE can suffer from 100% bias by missing just one variable. This demonstrates the

importance of bias detection in causal diffusion analysis.

Although the proposed placebo tests suggest that the fifth set successfully adjusts for
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Figure 4: Placebo Tests, Main Estimates, and Bias-Corrected Estimates of the ACDE.
Note: Figures (a), (b) and (c) present results from the placebo tests, estimates of the ACDE under the

no omitted confounders assumption, and estimates from bias-corrected estimators with 95% confidence

intervals, respectively.

relevant confounders in this analysis, it is often infeasible to find such adjustment sets in many

other applications. To address these common scenarios, we now examine whether researchers

could obtain similar results using a bias-corrected estimator even with adjustment sets that

reject the null hypothesis of the placebo test.

Figure 4 (c) shows that bias-corrected estimates are similar regardless of the selection of

adjustment sets and they all cover the most credible point estimate from the fifth control set.

Even though the proposed placebo test detected a large amount of bias, researchers can obtain

credible estimates by correcting the biases in this example.

These results suggest that, in contrast to existing studies (Braun, 2011; Jäckle and König,

2016), the ACDE on the incidence of hate crimes is small when averaging over all counties

in Germany. In the next subsection, we show that the spatial diffusion of hate crimes is

concentrated among a small subset of counties that have a higher proportion of school dropouts.

5.3 Heterogeneous Diffusion Effects by Education

Now, we extend the previous analysis by considering the types of counties that are more sus-

ceptible to the diffusion of hate crimes. In particular, we examine the role of education. Given

rich qualitative and quantitative evidence that hate crime is often a problem of young people,

it is critical to take into account one of the most important institutional contexts around them,

i.e., schooling. The literature has discussed at least three mechanisms through which education

can reduce the risk of hate crimes. First, education increases economic returns to current and
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future legitimate work, thereby raising the opportunity cost of committing hate crimes (e.g.,

Lochner and Moretti, 2004). Second, education may change the psychological costs associated

with hate crimes. More educated people tend to have lower levels of ethnocentrism and place

more emphasis on cultural diversity (Hainmueller and Hiscox, 2007). Finally, schooling has

incapacitation effects – keeping adolescents busy and off the street, thereby directly reducing

the chances of committing crimes (Jacob and Lefgren, 2003).

Building on the literature above, we investigate whether local educational contexts con-

dition the spatial diffusion dynamics of hate crimes. We use a proportion of school dropouts

without a secondary school diploma as a measure of local educational performance. To better

disentangle the education explanation, we analyze East Germany and West Germany sepa-

rately because they have substantially different distributions of proportions of school dropouts

(counties in East Germany have much higher proportions of school dropouts). Here we report

results from East Germany and provide those for West Germany in Appendix E. In particular,

we estimate the conditional average causal diffusion effects (conditional ACDEs) for counties

that have high and low proportions of school dropouts without a secondary school diploma. We

use 9% as a cutoff for high and low proportions of school dropouts, which is approximately the

median value in East Germany. We add an interaction term between the treatment variable

and this indicator variable to the original model in equation (13) and to the original placebo

model in equation (14).

Figure 5 presents results for the conditional ACDE for counties that have a higher pro-

portion of school dropouts. Similar to the case of the ACDE estimation, Figure 5 (a) shows

strong concerns of biases in the first four adjustment sets. Even though a 95% confidence

interval of the fourth estimate covers zero, its point estimate is far from zero (around 4 per-

centage points). In contrast, the placebo test suggests that the fifth set adjusts for relevant

confounders where a placebo estimate is close to zero.

Based on results from the placebo tests, we examine estimates from the main model in

Figure 5 (b). The first four sets, likely to be biased, exhibit large point estimates, larger than

10 percentage points. More interestingly, even with the most credible fifth adjustment set, a

point estimate is as large as 6 percentage points and is statistically significant. This effect size

is substantively important given that it is about one-fourth of the sample average outcome in

this subset (26%). Bias-corrected estimates in Figure 5 (c) confirm that the conditional ACDE

for counties with a higher proportion of school dropouts is large and similar regardless of the

selection of adjustment sets, while it is not statistically significant.

When we estimate the conditional ACDE for counties that have a lower proportion of
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Figure 5: Placebo Tests, Main Estimates, and Bias-Corrected Estimates of the conditional
ACDE for counties with a high proportion of school dropouts. Note: Figures (a), (b) and

(c) present results from the placebo tests, estimates of the conditional ACDE under the no omitted

confounders assumption, and estimates from bias-corrected estimators with 95% confidence intervals,

respectively.

school dropouts, effects are close to zero and their 95% confidence intervals cover zero, as

the education hypothesis expects (see Appendix E). Causal diffusion effects are also precisely

estimated to be zero in West Germany, where the proportions of school dropouts are much

lower than in East Germany. This additional analysis suggests that the spatial diffusion

dynamics of hate crimes operate, if any, only in places with low educational performance and

thus, prevention policies can have positive multiplier effects only when targeting areas with

low educational performance.

6 Concluding Remarks

Causal diffusion dynamics have been an integral part of many social and biomedical science

theories. Given that spatial and network panel data have become increasingly common, it

is essential to develop methodologies to draw causal inference for diffusion effects. However,

causal diffusion analysis has been challenging due to two well-known types of biases, i.e., con-

textual confounding and homophily bias. Recognizing that causal inference for diffusion effects

is generally impossible without further assumptions (Shalizi and Thomas, 2011; VanderWeele

and An, 2013; Ogburn, 2018), this paper examines identification of causal diffusion effects

using placebo outcomes under a new assumption of structural stationarity. This structural

stationarity requires the existence of causal relationships among variables — not the effect or

sign of such relationships — to be stable over time. Instead of directly assuming the validity
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of placebo outcomes, we show that we can transparently choose and justify placebo outcomes

for identifying causal diffusion effects under the structural stationarity assumption.

Under structural stationarity, we first propose a statistical placebo test that can detect a

wide class of biases, including contextual confounding and homophily bias. Then, we develop

a difference-in-differences style estimator that can directly correct biases under an additional

causal assumption. Applying the proposed methods to geo-coded hate crime data, we exam-

ined the spatial diffusion of hate crimes in Germany. After removing upward bias in previous

studies, we found that the average effect of spatial diffusion is small, in contrast to recent quan-

titative analyses (Braun, 2011; Jäckle and König, 2016). This empirical analysis demonstrates

the large differences in substantive conclusions that can result from contextual confounding.
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Supplementary Appendix

A Proofs

A.1 Proof of Theorem 1

In this proof, we use C and C
P

to denote Cit and C
P
it for notational simplicity.

A.1.1 Setup

Given that adjustment set C are defined to be pre-treatment (i.e., variables not affected by

the treatment), theoretical results on causal DAGs (Pearl, 1995; Shpitser et al., 2012) imply

that Yit(d) ⊥⊥ YNi,t−1 | C is equivalent to no unblocked back-door paths from YNi,t−1 to Yit

with respect to C in causal DAG G (see Lemma 1). Additionally, Yi,t−1 ⊥⊥ YNi,t−1 | C
P

is equivalent to no unblocked back-door paths from YNi,t−1 to Yi,t−1 with respect to C
P

in

causal DAG G.

The theorem requires one regularity condition – the violation of the no omitted confounders

assumption, if any, is proper. Intuitively, it means that bias (i.e., the violation of the no

omitted confounders assumption) is in fact driven by omitted variables. Bias is not proper

when the only source of bias is the misadjustment of the lag structure of observed covariates.

Importantly, contextual confounding and homophily bias are proper, and hence within the

scope of this theorem.

Definition 1 (Proper Bias)

Suppose adjustment set C does not satisfy Assumption 1. This violation (bias) is defined to be

proper when it satisfies the following condition: If control set Cit cannot block all back-door

paths from YNi,t−1 to Yit, there is at least one back-door path that any subset of the following

set cannot block.

{Cit,C
(−1)
it ,C

(+1)
it ,YNi,t−2},

where C
(−1)
it and C

(+1)
it are a lag and a lead of the time-dependent variables in Cit.

A.1.2 Bias → Dependence in Placebo Test

Here, we show that when set C cannot block all back-door paths from YNi,t−1 to Yit, set C
P

cannot block all back-door paths from YNi,t−1 to Yi,t−1.

Step 1 (Proper Bias): Given the assumption that the set C is proper, set C
P

cannot block

all back-door paths from YNi,t−1 to Yit because C
P

is a subset of {C,C(−1)
,C

(+1)
,YNi,t−2}.
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Step 2 (Set up the main unblocked back-door path to investigate): Let π be a back-

door path from YNi,t−1 to Yit that both C and C
P

and any subset of {C,C(−1)
,C

(+1)
,YNi,t−2}

cannot block. Without loss of generality, we assume that this unblocked back-door path starts

with an arrow pointing to Yk,t−1 where k ∈ Ni and it ends with an arrow pointing to Yit.

Step 3 (Case I. the last node of the unblocked back-door path is time-independent):

First, consider a case in which the last variable in an unblocked back-door path has a directed

arrow pointing to Yit and time-independent. Let (Z, Yit) denote the last two node path

segment on π where Z is a time-independent variable and there exists a directed arrow from

Z to Yit. Note that we do not put any individual index to Z because the proof holds for any

index. Since this is an unblocked path, Z is not in C
P

and there is an unblocked back-door

path from Yk,t−1 to Z. Since Z is time-independent, there is a directed arrow from Z to Yi,t−1

by the structural stationarity (Assumption 2). Therefore, set C
P

cannot block this back-door

path from Yk,t−1 to Yi,t−1.

Step 4 (Case II. the last node of the unblocked back-door path is time-dependent):

Next, consider the case in which the last variable in an unblocked back-door path points to

Yit and time-dependent. Let (B, Xt, Yit) denote the last three node path segment on π where

Xt is a time-dependent direct cause of Yit. Note that we do not put any individual index to

Xt because the proof holds for any index. Xt−1, Xt 6∈ C
P

because Xt 6∈ C (see Lemma 2 in

Section A.2).

Step 4.1 (sub-Case: the second last node is time-independent): First, assume B

is time-independent. Then, because a causal DAG satisfies structural stationarity (Assump-

tion 2), Xt−1 and B have the same relationship as the one between Xt and B. In addition,

since there is an unblocked path from Yk,t−1 to Xt to through B, there exists an unblocked

path from Yk,t−1 to Xt−1 through B. Given that there exists a directed arrow from Xt to Yit,

there exists a directed arrow from Xt−1 to Yi,t−1. Therefore, there is an unblocked back-door

path from Yk,t−1 to Yi,t−1.

Step 4.2 (sub-Case: the second last node is time-dependent): Next, assume B is

time-dependent and therefore we use Bt. First, we show that whenever B is time-dependent,

then the directed arrow is always from Xt to Bt. Suppose there is a directed arrow from Bt
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to Xt. If Bt in C
P

, then this back-door is blocked (therefore, choose another π). So, Bt is not

in C
P

. Therefore, we can collapse Bt into Xt, meaning that if B is time dependent, then the

directed arrow is always from Xt to Bt.

Now, suppose there is a directed arrow from Xt to Bt. We know there exists an unblocked

path from Yk,t−1 to Xt through Bt. Now, because Yi,t−1 ← Xt−1 → Xt → Bt, there is an

unblocked back-door path from Yk,t−1 to Yi,t−1 because the underlying causal DAG satisfies

structural stationarity. 2

A.1.3 No Bias → Independence in Placebo Test

Next, we prove that when set C can block all back-door paths from YNi,t−1 to Yit, set C
P

can block all back-door paths from YNi,t−1 to Yi,t−1. We show the contraposition: when there

is a back-door path from YNi,t−1 to Yi,t−1 that set C
P

cannot block, set C cannot block all

back-door paths from YNi,t−1 to Yit. Since C does not include any Des(Yk,t−1), we know C
P

also does not include any Des(Yk,t−1). Also, by definition, C
P

does not include any Des(Yi,t−1).

Therefore, without loss of generality, we can focus on unblocked back-door paths that start

with an arrow pointing to Yk,t−1 where k ∈ Ni and end with an arrow pointing to Yi,t−1.

Step 1 (Control Set cannot block all back-door paths to the Placebo outcome):

First, we show that when there is a back-door path from Yk,t−1 to Yi,t−1 that set C
P

cannot

block, set C cannot block all back-door paths from Yk,t−1 to Yi,t−1. From set C
P

to set C,

we need to (1) add Des(Yi,t−1) and (2) remove C
(−1)

and YNi,t−2. We show here that this

process cannot block a back-door path that set C
P

cannot block. The step (1) cannot block

the back-door path because adding Des(Yi,t−1) cannot block a back-door path from Yk,t−1 to

Yi,t−1 unblocked by set C
P

(see Lemma 3 in Section A.2). For (2), we first check whether

removing Xt−1 ∈ C
(−1)

can block a back-door path that set C
P

cannot block. To begin with,

we can remove Xt−1 because Xt ∈ C. Removing variables Xt−1 can be helpful if Xt−1 is a

collider or a descendant of a collider for a back-door path. However, if so, Xt is a descendant of

a collider and it is in set C and therefore, removing Xt−1 cannot block any additional paths.

Next, we need to check whether removing a variable B ∈ YNi,t−2 can block the back-door

path that the set C
P

cannot block. Removing variable B can be helpful if B is a collider or

a descendant of a collider for a back-door path. If so, there is an unblocked back-door path

(with respect to C
P

) that starts with an arrow pointing to B and ends with an arrow pointing

3



to Yi,t−1, i.e., B ← . . .→ Yi,t−1. Since B has a directed arrow pointing to Yk,t−1, removing B

unblock a new back-door path from Yk,t−1 through B, which points to Yi,t−1. Although this

unblocked back-door path with respect to C is different from the unblocked back-door path

with respect to C
P

, the paths are the same after node B and therefore at least the last three

nodes are the same. Therefore, we can use π to be a back-door from Yk,t−1 to Yi,t−1 that both

sets C and C
P

cannot block.

Step 2 (Case I: the last node of the unblocked back-door path is time-independent):

Consider the case in which the last two nodes are (Z → Yi,t−1) and Z is time-independent.

Then, since Z → Yit from structural stationarity (Assumption 2), set C cannot block this

back-door.

Step 3 (Case II: the last node of the unblocked back-door path is time-dependent):

Next, consider the case in which the last two nodes are (Xt−1 → Yi,t−1). Since Xt−1 6∈ C
P

and

Xt−1 6∈ Des(Yi,t−1), Xt−1, Xt 6∈ C. Therefore, set C cannot block Yk,t−1 ← · · ·Xt−1 → Xt →

Yit. 2

A.2 Proof of Lemmas used for Theorem 1

Here, we prove all the lemmas used to prove Theorem 1.

Lemma 1 (Equivalence between Back-Door Criteria and No Omitted Confounder

Assumption (Shpitser et al., 2012)) For a pretreatment adjustment set C (i.e., variables

not affected by the treatment), the following two statements hold.

1. If a set C satisfies the back-door criterion with respect to (Yit,YNi,t−1) in causal DAG G,

then Yit(d) ⊥⊥ YNi,t−1 | C holds in every causal model inducing causal DAG G (Pearl,

1995).

2. If Yit(d) ⊥⊥ YNi,t−1 | C holds in every causal model inducing causal DAG G, then a set C

satisfies the back-door criterion with respect to (Yit,YNi,t−1) in causal DAG G (Shpitser

et al., 2012).

Lemma 2 Xt 6∈ C→ Xt−1, Xt 6∈ C
P
.

Proof First, we show that Xt−1, Xt, Xt+1 6∈ C because set C is proper. It is because if Xt−1

or Xt are in C, then the lag adjustment of the control set C can block this path. If this path
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is the only back-door path, then C is not proper. If there is another back-door path that any

subset of {C,C(−1)
,C

(+1)
,YNi,t−2} cannot block, choose it as π.

Next, we show that Xt−1, Xt 6∈ C
P

. There are three ways for a variable to be in the placebo

set C
P

. We discuss them in order. First, a variable can be in the placebo set because it was

already in the control set. We know Xt−1, Xt 6∈ C, so this option is not feasible. Second, a

variable can be in the placebo set because it is a lag of the original control variables. Given

that Xt, Xt+1 are not in the control set, this option is also not feasible. Finally, a variable can

be in the placebo set because it is a lag of the treatment variable. (a) It is important to notice

that Xt−1 /∈ YNi,t−2 because Xt /∈ YNi,t−1 (i.e., the treatment cannot be the last node of the

unblocked back-door path). (b) Now, we verify Xt /∈ YNi,t−2. First, this back-door path can

be blocked by a subset of {C,C(−1)
,C

(+1)
,YNi,t−2}. If this back-door is the only unblocked

back-door, set C is not proper, therefore this is contradictory. If there is another back-door

path that both C and C
P

cannot block, choose it as π. 2

Lemma 3 Adding Des(Yi,t−1) cannot block a back-door path from Yk,t−1 to Yi,t−1 unblocked

by set C
P

.

Proof Suppose controlling for Des(Yi,t−1) can block a back-door path from Yk,t−1 to Yi,t−1

that the original set C
P

cannot block. Since C
P

does not include any Des(Yk,t−1) or Des(Yi,t−1),

this unblocked back-door path contains an arrow pointing to Yi,t−1.

Step 1 (Set up the main node B): At least one of Des(Yi,t−1) is a non-collider on this

path given that controlling for Des(Yi,t−1) can block this path. Let B be such a variable and

focus on one arrow pointing out from the node B.

Step 2 (Case I. Consider one side of the main node B): First, suppose this direction

leads to Yi,t−1. Then, since B is a Des(Yi,t−1), a directed path from node B to Yi,t−1 cannot

exist and therefore, there must be a collider on this direction of the path. Since this collider

is also in Des(Yi,t−1) and therefore not controlled in the original C
P

, this back-door is blocked

by set C
P
.

Step 3 (Case II. Consider the other side of the main node B): Next, consider the

direction that leads to Yk,t−1. Then, since Yi,t−1 is not a cause of Yk,t−1, a directed path from

node B to Yk,t−1 cannot exist and therefore, there must be a collider on this direction of the

5



path. Since this collider is also in Des(Yi,t−1) and therefore not controlled in the original C
P

,

this back-door is blocked by set C
P
. Hence, this is contradiction. This proves that controlling

for Des(Yi,t−1) cannot block a back-door path from Yk,t−1 to Yi,t−1 that set C
P

cannot block.

2

A.3 Proof of Theorem 2

Below, we describe two lemmas useful for proving Theorem 2. For completeness, their proofs

follow.

Lemma 4

Yit(d
L) ⊥⊥ YNi,t−1 | Uit,Cit =⇒ Yit(d

L) ⊥⊥ YNi,t−1 | Uit,Xit,C
B
it

Lemma 5 Under Assumption 3,

E[Yit(d
L) | Dit = dH ,Xit = x,C

B
it = c]− E[Yit(d

L) | Dit = dL,Xit = x,C
B
it = c]

= E[Yi,t−1 | Dit = dH ,Xi,t−1 = x,C
B
it = c]− E[Yi,t−1 | Dit = dL,Xi,t−1 = x,C

B
it = c].

Proof of the theorem Based on Lemma 5 and Assumption 3,

E[Yit(d
L) | Dit = dH ,Xit = x,C

B
it = c]

= E[Yit(d
L) | Dit = dL,Xit = x,C

B
it = c]

+E[Yi,t−1 | Dit = dH ,Xi,t−1 = x,C
B
it = c]− E[Yi,t−1 | Dit = dL,Xi,t−1 = x,C

B
it = c]

= E[Yit | Dit = dL,Xit = x,C
B
it = c]

+E[Yi,t−1 | Dit = dH ,Xi,t−1 = x,C
B
it = c]− E[Yi,t−1 | Dit = dL,Xi,t−1 = x,C

B
it = c].

Therefore,

E[Yit(d
H)− Yit(dL) | Dit = dH ]

=

∫
{E[Yit(d

H) | Dit = dH ,Xit,C
B

it ]

−E[Yit(d
L) | Dit = dH ,Xit,C

B

it ]}dFXit,C
B
it|Dit=dH (x, c)

=

∫
E[Yit | Dit = dH ,Xit,C

B

it ]dFXit,C
B
it|Dit=dH (x, c)

−
{
E[Yit | Dit = dL,Xit = x,C

B

it = c] + E[Yi,t−1 | Dit = dH ,Xi,t−1 = x,C
B

it = c]

−E[Yi,t−1 | Dit = dL,Xi,t−1 = x,C
B

it = c]
}
dF

Xit,C
B
it|Dit=dH (x, c)
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=

∫ {
E[Yit | Dit = dH ,Xit,C

B

it ]− E[Yit | Dit = dL,Xit,C
B

it ]
}
dF

Xit,C
B
it|Dit=dH (x, c)

−
∫ {

E[Yi,t−1 | Dit = dH ,Xi,t−1,C
B

it ]− E[Yi,t−1 | Dit = dL,Xi,t−1,C
B

it ]
}
dF

Xit,C
B
it|Dit=dH (x, c).

This completes the proof of Theorem 2 in cases where Uit is time-dependent and affected

by the outcome at time t. In Section A.3.3, we extend results to two other cases (1) when

Uit is time-dependent but is not affected by the outcome at time t and (2) when unobserved

confounder is time-independent Zi. 2

A.3.1 Proof of Lemma 4

If we write out control set C, the lemma can be rewritten as

Yit(d
L) ⊥⊥ YNi,t−1 | Uit,Xit,X∗it, X̃i

=⇒ Yit(d
L) ⊥⊥ YNi,t−1 | Uit,Xit,X∗it,X∗i,t−1, X̃i,YNi,t−2.

First, note that all variables in set {Uit,Xit,X∗it,X∗i,t−1, X̃i,YNi,t−2} are neither affected by

the potential outcome, Yit(d
L), nor affected by the treatment YNi,t−1. The difference between

the conditioning sets in the right- and left-hand sides is X∗i,t−1 and YNi,t−2. Including these

variables can open back-door paths only when these variables are colliders for these new back-

door paths. However, because a descendant of X∗i,t−1, X∗it, is in the conditioning set, it is

contradictory if conditioning on X∗i,t−1 can open a new back-door path. Additionally, because

YNi,t−2 is a parent of the treatment YNi,t−1, it is contradictory if conditioning on YNi,t−2

can open a new back-door path. Therefore, including X∗i,t−1 and YNi,t−2 don’t open any

back-door path, which completes the proof. 2

A.3.2 Proof of Lemma 5

Under Assumption 3,∫
C
{E[Yit(d

L)|Uit = u1,Xit = x,C
B

it = c]− E[Yit(d
L)|Uit = u0,Xit = x,C

B

it = c]}

×{dF
Uit|Dit=dH ,Xit=x,C

B
it=c

(u1)− dF
Uit|Dit=dL,Xit=x,C

B
it=c

(u1)}

=

∫
C
{E[Yi,t−1|Ui,t−1 = u1,Xi,t−1 = x,C

B

it = c]− E[Yi,t−1|Ui,t−1 = u0,Xi,t−1 = x,C
B

it = c]}

×{dF
Ui,t−1|Dit=dH ,Xi,t−1=x,C

B
it=c

(u1)− dF
Ui,t−1|Dit=dL,Xi,t−1=x,C

B
it=c

(u1)}.

Now we analyze each side of the equation.∫
C
{E[Yit(d

L)|Uit = u1,Xit = x,C
B

it = c]− E[Yit(d
L)|Uit = u0,Xit = x,C

B

it = c]}
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×{dF
Uit|Dit=dH ,Xit=x,C

B
it=c

(u1)− dF
Uit|Dit=dL,Xit=x,C

B
it=c

(u1)}

=

∫
C
E[Yit(d

L)|Uit = u1,Xit = x,C
B

it = c]

×{dF
Uit|Dit=dH ,Xit=x,C

B
it=c

(u1)− dF
Uit|Dit=dL,Xit=x,C

B
it=c

(u1)}

=

∫
C
E[Yit(d

L)|Dit = dH , Uit = u1,Xit = x,C
B

it = c]dF
Uit|Dit=dH ,Xit=x,C

B
it=c

(u1)

−
∫
C
E[Yit(d

L)|Dit = dL, Uit = u1,Xit = x,C
B

it = c]dF
Uit|Dit=dL,Xit=x,C

B
it=c

(u1)

= E[Yit(d
L)|Dit = dH ,Xit = x,C

B

it = c]− E[Yit(d
L)|Dit = dL,Xit = x,C

B

it = c],

where the first equality follows from the fact that E[Yit(d
L)|Uit = u0,Xit = x,C

B
it = c]

does not include u1, the second equality comes from Lemma 4, and the final from the rule of

conditional expectations. Similarly,∫
C
{E[Yi,t−1|Ui,t−1 = u1,Xi,t−1 = x,C

B

it = c]− E[Yi,t−1|Ui,t−1 = u0,Xi,t−1 = x,C
B

it = c]}

×{dF
Ui,t−1|Dit=dH ,Xi,t−1=x,C

B
it=c

(u1)− dF
Ui,t−1|Dit=dL,Xi,t−1=x,C

B
it=c

(u1)}

= E[Yi,t−1 | Dit = dH ,Xi,t−1 = x,C
B

it = c]− E[Yi,t−1 | Dit = dL,Xi,t−1 = x,C
B

it = c].

Taken together,

E[Yit(d
L) | Dit = dH ,Xit = x,C

B

it = c]− E[Yit(d
L) | Dit = dL,Xit = x,C

B

it = c]

= E[Yi,t−1 | Dit = dH ,Xi,t−1 = x,C
B

it = c]− E[Yi,t−1 | Dit = dL,Xi,t−1 = x,C
B

it = c].

2

A.3.3 Other cases

In Theorem 2, we consider cases in which Uit is time-dependent and affected by the outcome

at time t. Now we study two other cases (1) when Uit is time-dependent but is not affected by

the outcome at time t and (2) when unobserved confounder is time-independent Zi. For both

cases, Assumption 3 needs to be modified accordingly, although their substantive meanings

stay the same. The definition of the bias-corrected estimator is also the same. For case (1),

define Ũi ≡ (Uit, Ui,t−1) and for case (2), define Ũi ≡ Zi. Then, Assumption 3 is modified as

follows.

1. Time-invariant effect of unobserved confounder Ũ : For all u1, u0,x and c,

E[Yit(d
L) | Ũi = u1,Xit = x,C

B
it = c]− E[Yit(d

L) | Ũi = u0,Xit = x,C
B
it = c]

= E[Yi,t−1 | Ũi = u1,Xi,t−1 = x,C
B
it = c]− E[Yi,t−1 | Ũi = u0,Xi,t−1 = x,C

B
it = c].
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2. Time-invariant imbalance of unobserved confounder Ũ : For all u,x and c,

Pr(Ũi ≤ u | Dit = dH ,Xit = x,C
B
it = c)− Pr(Ũi ≤ u | Dit = dL,Xit = x,C

B
it = c)

= Pr(Ũi ≤ u | Dit = dH ,Xi,t−1 = x,C
B
it = c)− Pr(Ũi ≤ u | Dit = dL,Xi,t−1 = x,C

B
it = c).

A.4 Extensions

A.4.1 Sensitivity Analysis

As Lemma 5 shows, Assumption 3 is equivalent to the following equality.

E[Yit(d
L) | Dit = dH ,Xit = x,C

B
it = c]− E[Yit(d

L) | Dit = dL,Xit = x,C
B
it = c]

= E[Yi,t−1 | Dit = dH ,Xi,t−1 = x,C
B
it = c]− E[Yi,t−1 | Dit = dL,Xi,t−1 = x,C

B
it = c],

which substantively means the time-invariant bias. However, this assumption might hold only

approximately in applied settings. To assess the robustness of the bias-corrected estimates, we

consider a sensitivity analysis. In particular, we introduce sensitivity parameter λ as follows.

Bt(x, c)

Bt−1(x, c)
= λ

where

Bt(x, c) = E[Yit(d
L) | Dit = dH ,Xit = x,C

B
it = c]− E[Yit(d

L) | Dit = dL,Xit = x,C
B
it = c],

Bt−1(x, c) = E[Yi,t−1 | Dit = dH ,Xi,t−1 = x,C
B
it = c]− E[Yi,t−1 | Dit = dL,Xi,t−1 = x,C

B
it = c].

The time-invariance assumption (Assumption 3) corresponds to λ = 1. Using this sensitivity

parameter, we can re-define the bias-corrected estimator as follows.

τ̂Main − λ× δ̂Placebo

Therefore, a sensitivity analysis is to compute the bias-corrected estimator for a range of

plausible values of λ and investigate whether substantive conclusions vary according to the

choice of the sensitivity parameter.

B Causal Directed Acyclic Graphs: Review

In the paper, we use a causal directed acyclic graph and nonparametric structural equations to

represent causal relationships. Here, we review basic definitions and results. See Pearl (2000)
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for a comprehensive review. Following Pearl (1995), we define a causal directed acyclic graph

(causal DAG) to be a set of nodes and directed edges among nodes such that the graph has no

cycles and each node corresponds to a univariate random variable. Each random variable is

given by its nonparametric structural equation. When there is a directed edge from one variable

to another variable, the latter variable is a function of the former variable. For example, in a

causal DAG in Figure A1 (a), four random variables (A,B,C,D) are given by nonparametric

structural equations in Figure A1 (b); A = fA(εA), B = fB(εB), C = fC(A,B, εC), and D =

fD(A,B,C, εD), where fA, fB, fC and fD are unknown nonparametric structural equations and

(εA, εB, εC , εD) are mutually independent errors. The node that a directed edge starts from is

called the parent of the node that the edge goes into. The node that the edge goes into is the

child of the node it comes from. If two nodes are connected by a directed path, the first node

is the ancestor of every node on the path, and every node on the path is the descendant of the

first node (Pearl, 2000). For example, node A is a parent of node C, and nodes C and D are

descendants of node B. The requirement that the errors be mutually independent essentially

means that there is no variable absent from the graph which, if included on the graph, would

be a parent of two or more variables.

The nonparametric structural equations are general – random variables may depend on any

function of their parents and variable-specific errors. They encode counterfactual relationships

between the variables on the graph by recursively representing one-step-ahead counterfactuals.

Under a hypothetical intervention setting A to a, the distribution of the variables B,C, and D

are then recursively given by the nonparametric structural equations with A = fA(εA) replaced

by A = a. Specifically, B = fB(εB), C = C(a) = fC(A = a,B, εC), and D = D(a) = fD(A =

a,B,C = C(a), εD) where C(a), D(a) are the counterfactual values of C and D when A is set

to a.

C Example of Structural Stationarity

Structural stationarity is satisified in a more general NPSEM than the example in the main

text. First, variables can be affected not only by one-time lag but also by longer-time lags.

For example, outcome Yit can be affected not only by the neighbors’ outcomes at the last

period YNi,t−1 but also by the neighbors’ outcomes at two periods before YNi,t−2. Second,
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A

B

C

D

(a) A causal directed acyclic graph

A = fA(εA)

B = fB(εB)

C = fC(A,B, εC)

D = fD(A,B,C, εD)

(b) A structural equation model

Figure A1: An Example of Causal DAGs and SEMs

each variable can be not only affected by other variables within each unit but also by other

variables of neighbors. For example, outcome Yit can be affected by LNi,t−1 and UNi,t−1.

We now consider an example that incorporates more complex feedback between variables

across time and neighbors. For i ∈ {1, . . . , n} and t ∈ {1, . . . , T}, suppose the data are

generated by sequentially evaluating the following set of equations:

(Outcome variable)

Yit = fY (YNi,t−1,YNi,t−2, Yi,t−1,Lit,LNi,t−1, L̃i,Uit,UNi,t−1, ε
Y
it ),

(Time-varying Observed variables)

Lit = fL(Li,t−1,LNi,t−1, L̃i, Yi,t−1,YNi,t−2,Ui,t−1,UNi,t−2, εεε
L
it),

(Time-invariant Observed variables)

L̃i = f
L̃

(Li,0,LNi,0, Yi,0,YNi,0,Ui,0,UNi,0, εεε
L̃
i ),

(Time-varying Unobserved variables)

Uit = fU (Ui,t−1,UNi,t−1, Yi,t−1,YNi,t−2,Li,t−1,LNi,t−2, L̃i, εεε
U
it).

(A1)

Several points are worth noting. First, variables can be affected not only by one-time lag

but also by longer-time lags. For example, outcome Yit is affected not only by the neighbors’

outcomes at the last period YNi,t−1 but also by the neighbors’ outcomes at two periods before

YNi,t−2. While we do not restrict the number of time-lags and allow for higher-order temporal

dependence, we keep our focus on the ACDE defined in equation (1) as our causal estimand.

Second, each variable is not only affected by other variables within each unit but also by other

variables of neighbors. For example, outcome Yit is affected by LNi,t−1 and UNi,t−1. Time-

vaying unmeasured variables Uit is affected by UNi,t−1, YNi,t−2, and LNi,t−2. Even though the
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complexity of the NPSEMs are different in equations (5) and (A1), they both satisfy structural

stationarity.

D Simulation Study

In this section, we consider the performance of the proposed placebo test and bias-corrected

estimator in a simulation study calibrated to the real hate crime data. In Section D.1, we show

that (1) a placebo estimator is consistent for zero under the no omitted confounders assumption

as Theorem 1 implies and (2) the statistical power of the proposed placebo test is comparable

to an “oracle” test — test whether an estimated ACDE is statistically distinguishable from

the true ACDE, which is available only in simulations. In Section D.2, we demonstrate that

the bias-corrected estimator reduces bias and root mean squared error (RMSE) even under a

slight violation of the time-invariance assumption (Assumption 3).

Setup. To approximate realistic data generating processes, we use the same hate crime data

as in the main application but focus on another important outcome, the number of attacks

against refugee housing, which is also an important aspect of hate crimes studied in the

literature. As for observed covariates, we include five major contextual variables; the number of

refugees, the number of crimes per 100,000 inhabitants, per capita income, the unemployment

rate, and the share of school leavers without lower secondary education graduation. We fit a

linear regression with these five covariates, as in equation (9), to estimate the basic parameters

of the data generating process.

We simulate a distance matrix W based on the stochastic block model (Holland et al.,

1983) for each of the sample size n ∈ {100, 500, 1000, 2000}. Each group consists of ten units

and there exist K = n/10 groups. K groups are divided into L = K/5 blocks. If units i

and j are within the same group, Pr(Wij = 1) = 0.8. If units i and j are within the same

block but not in the same group, Pr(Wij = 1) = 0.2. If units i and j are in different blocks,

Pr(Wij = 1) = 0. This setup is designed to ensure that the network dependency does not keep

growing as the sample size grows. See Sävje et al. (2017) and Ogburn et al. (2017) for general

discussions on network asymptotics.

We then simulate an unobserved contextual variable Uit. In particular, we consider two

scenarios; (1) time-invariant confounding where assumptions for both the placebo test and the
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bias-corrected estimator hold, and (2) structural stationarity where assumptions hold for the

placebo test but the time-invariance assumption required for the bias-correction is violated. For

the first scenario, we set unobserved contextual variable U to be time-invariant where Ui = Ũk[i]

where Ũk ∼ N (0, 0.5) and k[i] is a group indicator for unit i. For the second scenario, we draw

unobserved contextual variable U as follows. Uit = Ũk[i],t where Uk,t = 0.9Uk,t−1 +N (0, 0.1)

where Uk0 ∼ N (0, 0.5).

Given this setup, we sample potential outcomes using the following data generating process.

Yi,t+1(Dit) = α+ τDit + X
>
i,t+1β + γUi,t+1 + εi,t+1, (A2)

for sample size in each time period n ∈ {100, 500, 1000, 2000} and the total number of time peri-

ods T = 20. Dit ≡W>
i Yt indicates the treatment variable, five-dimensional vector Xi,t+1 rep-

resents five observed covariates from the real hate crime data, Ui,t+1 is the unobserved contex-

tual confounder affecting multiple units, and the error term εi,t+1 follows the normal distribu-

tion, εi,t+1 ∼ N (0, 0.1). Coefficients {α = 0.59, τ = 0.74, β = (0.75,−0.11,−0.28,−3.38, 3.90)}

are based on estimated parameters from the real hate crime data. The effect of unobserved

contextual confounder U is set to γ = 0.1. Based on this data generating process, we conduct

5000 independent Monte Carlo simulations.

D.1 Placebo Test

First, we consider the consistency of the proposed placebo test under the no omitted con-

founders assumption. Theorem 1 implies that when the no omitted confounders assumption

holds, the treatment variable and the lagged dependent variable are conditionally independent.

In particular, we fit a placebo regression:

Yit = α0 + δDit + τ0Di,t−1 + X
>
itβ0 + γ0Uit + εit. (A3)

We expect that a test statistic δ̂ is consistent for zero under the no omitted confounders

assumption. The first row in Figure A2 presents the results. As Theorem 1 shows, under

the no omitted confounders assumption, the placebo estimator δ̂ converges to zero as the

sample size grows. Because Theorem 1 only requires structural stationarity, the placebo test

is consistent under both scenarios.

We also investigate the statistical power of the proposed placebo test when the no omitted
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Figure A2: Simulation Results on Placebo Test. Note: The first row considers the consistency
of the placebo test under the no omitted confounders assumption. The second row compares
the statistical power of the proposed placebo test (solid red line) and the oracle test (dotted
black line). The first and second columns correspond to the time-invariant confounding and
structural stationarity, respectively. Results are based on 5000 Monte Carlo draws using four
sample sizes.

confounders assumption is violated. We fit a placebo regression:

Yit = α̃0 + δ̃Dit + τ̃0Di,t−1 + X
>
it β̃0 + ε̃it. (A4)

The key difference is that this regression now ignores contextual confounder Uit. Here,
̂̃
δ serves

as a test statistic for the placebo test. We compare this to an oracle test where we fit the

following main linear regression,

Yi,t+1 = αm + τmDit + X
>
i,t+1βm + ξi,t+1, (A5)

and test H0 : τm = τ. This test is an “oracle” test because it is available only in the simulation

where we know the true ACDE τ. The second row in Figure A2 presents the results. Even

when the sample size is small, the proposed placebo test achieves more than 70% of the oracle

14



test’s power. As the sample size grows, the proposed placebo test attains the statistical power

as high as that of the oracle test. Given that the oracle test is available only in simulations

where the true ACDE is known, these results suggest that the placebo test can serve as a

powerful practical tool to detect biases in applied settings.

15



D.2 Bias-Corrected Estimator

In Section 4.3, we show that the proposed bias-corrected estimator can identify the ACDE for

the treated under Assumption 3. Here, we investigate how much the bias-corrected estimator

can reduce bias and RMSE even in settings where this required time-invariance assumption is

slightly violated.

In particular, we compare an uncorrected estimator, which ignores unobserved contex-

tual confounder U , and the proposed bias-corrected estimator under two scenarios; (1) time-

invariant confounding and (2) structural stationarity. The time-invariance assumption required

for the bias correction (Assumption 3) holds in the first but not in the second scenario.

Figure A3 presents the simulation results. In the time-invariant confounding case (the first

column), whereas the bias in the conventional uncorrected estimator is about 0.12, the bias

in the proposed bias-corrected estimator is essentially 0. The bias is corrected as Theorem 2

implies. The RMSE also significantly improves upon the uncorrected conventional estimator.

The 95% confidence interval is close to its nominal coverage rate in contrast to that of the

uncorrected estimator.

More importantly, even in structural stationarity case (the second column in Figure A3)

where the required assumption for the bias correction is slightly violated, the bias-corrected

estimator shows reasonable performance. While the bias in the conventional uncorrected

estimator is about 0.04, the bias in the proposed bias-corrected estimator is less than 0.01.

Although the bias does not vanish, it reduces by about 80%. This benefit is also clear in the

results of RMSE. Because the bias-corrected estimator tends to have a larger standard error,

the RMSE of the bias-corrected estimator is bigger than the one of the uncorrected estimator

when the sample size is small. However, as the sample size grows, the bias-corrected estimator

outperforms the uncorrected estimator. Finally, as the required time-invariance assumption

is violated, the coverage of the 95% confidence interval for the bias-corrected estimator is

slightly smaller than its nominal coverage rate, but it attains more than 90% in contrast

to the performance of the uncorrected estimator. These results suggest that the proposed

bias-corrected estimator can reduce bias and RMSE in applied settings where the necessary

assumption might hold only approximately.
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Figure A3: Simulation Results on Bias-Corrected Estimator. Note: The first row compares
the absolute bias of the uncorrected estimator (empty black square) and the bias-corrected
estimator (solid blue circle). The second row examines the root mean squared error (RMSE)
and the third row shows the coverage of the 95% confidence interval. The first and second
columns correspond to the time-invariant confounding and structural stationarity, respectively.
Results are based on 5000 Monte Carlo draws using four sample sizes.
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E Empirical Analysis in Section 5

E.1 Control Sets and Placebo Sets

We investigate five different control sets to illustrate how to use the proposed placebo test and

bias-corrected estimator. Table A1 describes types of variables we use for those five control

sets and their corresponding placebo sets. The column of “Main model” indicates variables

used for control sets and the column of “Placebo model” indicates corresponding variables in

placebo sets.

The first control set (C1) includes variables from “Basic Variables.” The second control set

(C2) adds variables from “Two-month Lags” to the first control set. The third control set adds

state fixed effects to the second control set. The fourth control set adds all the variables from

“Contextual Variables,” which include variables on refugees, demographics, general crimes,

economic indicators, education, and politics. Note that these contextual variables are measured

only annually. The final fifth set adds the time trend variable as third-order polynomials to

the fourth set.
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Type Main Model Placebo Model

Outcome Physical Attackt+1 Physical Attackt

Treatment Physical Attackt in Neighbors Physical Attackt in Neighbors

A Control Set/A Placebo Set

Basic Variables Physical Attackt Physical Attackt−1

Physical Attackt−1 in Neighbors Physical Attackt−1,t−2 in Neighbors

the number of neighbors the number of neighbors

variance of Wi variance of Wi

Two-month Lags Physical Attackt−1 Physical Attackt−2

Contextual Variables (annual)

Refugee variables Total number of refugees Total number of refugees

Total number of foreign born Total number of foreign born

Population variables Population size Population size

Share of male inhabitants Share of male inhabitants

Crime variables Number of general crimes per 100,000 inhabitants Number of general crimes per 100,000 inhabitants

Percent of general crimes solved Percept of general crimes solved

Economic variables Number of newly registered business Number of newly registered business

Number of newly deregistered business Number of newly deregistered business

Number of insolvency Number of insolvency

per capita income per capita income

Number of employees with social security Number of employees with social security

Unemployment rate Unemployment rate

Education variables Share of school leavers Share of school leavers

without lower secondary education graduation without lower secondary education graduation

Political variables Turnout rate in 2013 Turnout rate in 2013

Vote share of extreme right and Vote share of extreme right and

populist right-wing parties in 2013 populist right-wing parties in 2013

Table A1: Five Control Sets and Placebo Sets: Spatial Diffusion of Hate Crimes.
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E.2 Conditional ACDEs by Education

We present the distribution of proportions of school dropouts without a secondary school

diploma, separately for East Germany and West Germany. Because these distributions are

substantially different between them (Figure A4), we estimate the conditional ACDE by pro-

portions of school dropouts, separately for the East and the West.
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Figure A4: Distribution of Proportions of School Dropouts. Note: For East Germany, we use 9%

as a cutoff for high and low proportions of school dropouts, which is approximately the median value

in East Germany. For West Germany, we use 5% as a cutoff for high and low proportions of school

dropouts, which is approximately the median value in West Germany.

Next, we present the conditional ACDE for counties in East Germany with low proportions of

school dropouts. In contrast to Figure 5, estimates are small.
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Figure A5: Results of the conditional ACDE (Low Proportion of School Dropouts, East). Note:

Figure (a) shows that the last fifth set produces the smallest placebo estimate. Focusing on this fifth

control set, a point estimate of the ACDE in Figure (b) is close to zero and its 95% confidence interval

covers zero. Figure (c) shows that bias-corrected estimates are similar regardless of the selection of

control variables and all of their 95% confidence intervals cover zero.
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Now, we present the conditional ACDEs for counties in West Germany with high and low

proportions of school dropouts. Given that proportions of school dropouts are lower in West

Germany, estimates of the conditional ACDEs are small, in contrast to Figure 5.
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Figure A6: Results of the conditional ACDE (High Proportion of School Dropouts, West).
Note: Figure (a) shows that the third, fourth and fifth sets produce small placebo estimates. Focusing

on these sets, point estimates of the ACDE in Figure (b) are close to zero and sometimes negative.

Figure (c) shows that bias-corrected estimates are similar regardless of the selection of control variables

and all of their 95% confidence intervals cover zero.
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Figure A7: Results of the conditional ACDE (Low Proportion of School Dropouts, West).
Note: Figure (a) shows that all the sets produce small placebo estimates. This is partly because there

are few hate crimes in this area and hence, there is no variation in outcomes and treatments. In

addition, point estimates of the ACDE in Figure (b) are close to zero and sometimes negative. Figure

(c) shows that bias-corrected estimates are similar regardless of the selection of control variables and

all of their 95% confidence intervals cover zero.
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