
A Mathematical Appendix: Proofs of Theorems

A.1 Lemmas

Below, we describe all the lemmas, which are used to prove the main theorems of this

paper. For completeness, their proofs appear in the supplementary appendix.

Lemma 1 (An Alternative Definition of the K-way Average Interaction Effect)

The K-way average interaction effect (AIE) of treatment combination T1:K
i = t1:K =

(t1, . . . , tK) relative to baseline condition T1:K
i = t1:K0 = (t01, . . . , t0K), given in Defi-

nition 3, can be rewritten as,

ξ1:K(t1:K ; t1:K0 ) = ξ1:(K−1)(t
1:(K−1); t

1:(K−1)
0 | TiK = tK)− ξ1:(K−1)(t1:(K−1); t1:(K−1)0 | TiK = t0K).

Lemma 2 Under Assumption 2, for any k = 1, . . . , K, the following equality holds,∫
FKk

ξKK
(T̃Kk , tKK\Kk ; tKK

0 )dF (T̃Kk) = ξKK\Kk
(tKK\Kk , t

KK\Kk

0 )

+
k∑
`=1

(−1)`
∑
K`⊆Kk

∫
FKk\K`

ξKK\Kk
(tKK\Kk , t

KK\Kk

0 | T̃Kk\K` ,T
K`

i = tK`
0 )dF (T̃Kk\K`).

Lemma 3 (Decomposition of the K-way AIE) The K-way Average Treatment

Interaction Effect (AIE) (Definition 3), can be decomposed into the sum of the K-

way conditional Average Treatment Combination Effects (ACEs). Formally, let Kk ⊆
KK = {1, . . . , K} with |Kk| = k where k = 1, . . . , K. Then, the K-way AIE can be

written as follows,

ξKK
(tKK ; tKK

0 ) =
K∑
k=1

(−1)K−k
∑
Kk⊆KK

τKk
(tKk ; tKk

0 | T
KK\Kk

i = t
KK\Kk

0 ),

where the second summation is taken over the set of all possible Kk and the k-way

conditional ACE is defined as,

τKk
(tKk ; tKk

0 | T
KK\Kk

i = t
KK\Kk

0 ) = E
{∫
FKK

{Yi(tKk , t
KK\Kk

0 , Ti
KK )− Yi(tKk

0 , t
KK\Kk

0 , Ti
KK )}dF (TKK

i )

}
.

Lemma 4 (Decomposition of the K-way AMIE) The K-way Average Marginal

Treatment Interaction Effect (AMIE), defined in Definition 2, can be decomposed into

the sum of the K-way Average Treatment Combination Effects (ACEs). Formally, let
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Kk ⊆ KK = {1, . . . , K} with |Kk| = k where k = 1, . . . , K. Then, the K-way AMIE

can be written as follows,

πKK
(tKK ; tKK

0 ) =
K∑
k=1

(−1)K−k
∑
Kk⊆KK

τKk
(tKk ; tKk

0 ),

where the second summation is taken over the set of all possible Kk.

A.2 Proof of Theorem 1

We use proof by induction. Under Assumption 2, we first show for K = 2. To simplify

the notation, we do not write out the J−2 factors that we marginalize out. We begin

by decomposing the AME as follows,

ψA(al, a0) =

∫
B
E{Yi(a`, Bi)− Yi(a0, Bi)} dF (Bi)

= E{Yi(a`, b0)− Yi(a0, b0)}+

∫
B
E{Yi(a`, Bi)− Yi(a0, Bi)− Yi(a`, b0) + Yi(a0, b0)} dF (Bi)

= E{Yi(a`, b0)− Yi(a0, b0)}+

∫
B
ξAB(a`, Bi; a0, b0) dF (Bi).

Similarly, we have ψB(bm, b0) = E{Yi(a0, bm)−Yi(a0, b0)}+
∫
A ξAB(Ai, bm; a0, b0) dF (Ai).

Given the definition of the AMIE in equation (5), we have,

πAB(a`, bm, a0, b0) = E{Yi(a`, bm)− Yi(a0, b0)} − ψA(a`, a0)− ψB(bm, b0)

= ξAB(a`, bm; a0, b0)−
∫
B
ξAB(a`, Bi; a0, b0) dF (Bi)−

∫
A
ξAB(Ai, bm; a0, b0) dF (Ai).

This proves that the AMIE is a linear function of the AIEs. We next show that the

AIE is also a linear function of the AMIEs.

ξAB(a`, bm; a0, b0) = E[Yi(a`, bm)− Yi(a0, b0)]− ψA(a`, a0)− ψA(bm, b0)

− E[Yi(a`, b0)− Yi(a0, b0)] + ψA(a`, a0)− E[Yi(a0, bm)− Yi(a0, b0)] + ψA(bm, b0)

= πAB(a`, bm; a0, b0)− πAB(a`, b0; a0, b0)− πAB(a0, bm; a0, b0).

Thus, we obtain the desired results for K = 2.
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Now we show that if the theorem holds for any K with K ≥ 2, it also holds for

K + 1. First, using Lemma 2, we rewrite the equation of interest as follows,

πKK
(tKK ; tKK

0 ) = ξKK
(tKK ; tKK

0 ) +
K−1∑
k=1

(−1)k
∑
Kk⊆KK

{
ξKK\Kk

(tKK\Kk , t
KK\Kk

0 )

+
k∑
`=1

(−1)`
∑
K`⊆Kk

∫
FKk\K`

ξKK\Kk
(tKK\Kk , t

KK\Kk

0 | T̃Kk\K` ,T
K`

i = tK`
0 )dF (T̃Kk\K`)

}
.

Utilizing the the definition of the K-way AMIE given in Definition 2 and the assump-

tion that the theorem holds for K, we have,

πKK+1
(tKK+1 ; t

KK+1

0 ) = τKK+1
(tKK+1 ; t

KK+1

0 )−
K∑
k=1

∑
Kk⊆KK+1

πKk
(tKk ; tKk

0 )

= τKK+1
(tKK+1 ; t

KK+1

0 )

−
K∑
k=1

∑
Kk⊆KK+1

[
ξKk

(tKk ; tKk
0 ) +

k−1∑
m=1

(−1)m
∑
Km⊆Kk

{
ξKk\Km(tKk\Km , t

Kk\Km

0 )

+
m∑
`=1

(−1)`
∑
K`⊆Km

∫
FKm\K`

ξKk\Km(tKk\Km , t
Kk\Km

0 | T̃Km\K` ,T
K`

i = tK`
0 )dF (T̃Km\K`)

}]
.

(17)

After rearranging equation (17), the coefficient for ξKK+1\Ku(tKK+1\Ku , t
KK+1\Ku

0 )

is equal to (−1)u. Similarly, the coefficient of the following term is equal to (−1)u+v.∫
FKu\Kv

ξKK+1\Ku(tKK+1\Ku , t
KK+1\Ku

0 | T̃Ku\Kv ,T
Kv

i = tKv
0 )dF (T̃Ku\Kv).

Therefore, we can rewrite equation (17) as follows,

πKK+1
(tKK+1 ; t

KK+1

0 )

= τKK+1
(tKK+1 ; t

KK+1

0 ) +
K∑
k=1

(−1)k
∑

Kk⊆KK+1

[
ξKK+1\Kk

(tKK+1\Kk , t
KK+1\Kk

0 )

+
k−1∑
`=1

(−1)`
∑
K`⊆Kk

∫
FKk\K`

ξKK+1\Kk
(tKK+1\Kk , t

KK+1\Kk

0 | T̃Kk\K` ,T
K`

i = tK`
0 )dF (T̃Kk\K`)

]

= ξKK+1
(tKK+1 ; t

KK+1

0 ) +
K∑
k=1

(−1)k
∑

Kk⊆KK+1

[
ξKK+1\Kk

(tKK+1\Kk , t
KK+1\Kk

0 )

+
k∑
`=1

(−1)`
∑
K`⊆Kk

∫
FKk\K`

ξKK+1\Kk
(tKK+1\Kk , t

KK+1\Kk

0 | T̃Kk\K` ,T
K`

i = tK`
0 )dF (T̃Kk\K`)

]
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= ξKK+1
(tKK+1 ; t

KK+1

0 ) +
K∑
k=1

(−1)k
∑

Kk⊆KK+1

∫
ξ(TKk , tKK+1\Kk ; t

KK+1

0 )dF (TKk),

where the second equality follows from applying Lemma 1 to τKK+1
(tKK+1 ; t

KK+1

0 ) and

the final equality from Lemma 2. This proves that the K-way AMIE is a linear

function of the K-way AIEs.

We next prove that the K-way AIE can be written as a linear function of the

K-way AMIEs. We will show this by mathematical induction. We already show the

desired result holds for K = 2. Choose any K ≥ 2 and assume that the following

equality holds,

ξKK
(tKK ; tKK

0 ) =
K∑
k=1

(−1)K−k
∑
Kk⊆KK

πKK
(tKk , t

KK\Kk

0 ; tKk
0 , t

KK\Kk

0 ).

Using the definition of the K-way AIE given in Lemma 1, we have

ξKK+1
(tKK+1 ; t

KK+1

0 ) = ξKK
(tKK ; tKK

0 | TK+1
i = tK+1)− ξKK

(tKK ; tKK
0 | TK+1

i = tK+1
0 )

=
K∑
k=1

(−1)K−k
∑
Kk⊆KK

πKK+1
(tKk , t

KK\Kk

0 , tK+1; tKk
0 , t

KK\Kk

0 , tK+1)

−
K∑
k=1

(−1)K−k
∑
Kk⊆KK

πKK+1
(tKk , t

KK\Kk

0 , tK+1
0 ; tKk

0 , t
KK\Kk

0 , tK+1
0 ),

where the second equality follows from the assumption. Let us consider the following

decomposition.

K+1∑
k=1

(−1)K−k+1
∑

Kk⊆KK+1

πKK+1
(tKk , t

KK+1\Kk

0 ; tKk
0 , t

KK+1\Kk

0 )

=
K∑
k=1

(−1)K−k
∑
Kk⊆KK

πKK+1
(tKk , t

KK\Kk

0 , tK+1; tKk
0 , t

KK\Kk

0 , tK+1
0 ) + (−1)KπKK+1

(tKK
0 , tK+1; tKK

0 , tK+1
0 )

+
K∑
k=1

(−1)K−k+1
∑
Kk⊆KK

πKK+1
(tKk , t

KK\Kk

0 , tK+1
0 ; tKk

0 , t
KK\Kk

0 , tK+1
0 ), (18)

where the first and second terms together represent the cases with K + 1 ∈ Kk, while

the third term corresponds to the cases with K + 1 ∈ KK+1 \ Kk. Note that these

two cases are mutually exclusive and exhaustive. Finally, note the following equality,

K∑
k=1

(−1)K−k
∑
Kk⊆KK

πKK+1
(tKk , t

KK\Kk

0 , tK+1; tKk
0 , t

KK\Kk

0 , tK+1)
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=
K∑
k=1

(−1)K−k
∑
Kk⊆KK

πKK+1
(tKk , t

KK\Kk

0 , tK+1; tKk
0 , t

KK\Kk

0 , tK+1
0 ) + (−1)KπKK+1

(tKK
0 , tK+1; tKK

0 , tK+1
0 ).

(19)

Then, together with equations (18) and (19), we obtain,

ξKK+1
(tKK+1 ; t

KK+1

0 ) =
K+1∑
k=1

(−1)K−k+1
∑

Kk⊆KK+1

πKK+1
(tKk , t

KK+1\Kk

0 ; tKk
0 , t

KK+1\Kk

0 ).

Thus, the desired linear relationship holds for any K ≥ 2. 2

A.3 Proof of Theorem 2

To prove the invariance of the K-way AMIE, note that Lemma 4 implies,

πKK
(t; t0) − πKK

(t̃; t0) =
K∑
k=1

(−1)K−k
∑
Kk⊆KK

τKk
(tKk ; t̃Kk). (20)

πKK
(t; t̃0) − πKK

(t̃; t̃0) =
K∑
k=1

(−1)K−k
∑
Kk⊆KK

τKk
(tKk ; t̃Kk). (21)

Thus, the K-way AMIE is interval invariant. To prove the lack of invariance of the

K-way AIE, note that according to Lemma 3, we can rewrite equation (11) as follows.

K∑
k=1

(−1)K−k
∑
Kk⊆KK

{
τKk

(tKk ; tKk
0 | T

KK\Kk

i = t
KK\Kk

0 )− τKk
(t̃Kk ; tKk

0 | T
KK\Kk

i = t
KK\Kk

0 )

}

=
K∑
k=1

(−1)K−k
∑
Kk⊆KK

{
τKk

(tKk ; tKk
0 | T

KK\Kk

i = t̃
KK\Kk

0 )− τKk
(t̃Kk ; tKk

0 | T
KK\Kk

i = t̃
KK\Kk

0 )

}
.

It is clear that this equality does not hold in general because the K-way conditional

ACEs are conditioned on different treatment values. Thus, the K-way AIE is not

interval invariant. 2

A.4 Proof of Theorem 3

We use L to denote the objective function in equation (12). Since it is a convex

optimization problem, it has one unique solution and the solution should satisfy the

following equalities.

∂L

∂µ
= 0,

∂L

∂βj`
= 0 for all j, and ` ∈ {0, 1, . . . , Lj − 1},
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∂L

∂βjj
′

`,m

= 0, for all j 6= j′, ` ∈ {0, 1, . . . , Lj − 1} and m ∈ {0, 1, . . . , Lj′ − 1},

∂L

∂βKk

tKk

= 0 for all tKk , and Kk ⊂ KJ such that k ≥ 3. (22)

For the sake of simplicity, we introduce the following notation.

S(tKk) ≡ {i; TKk
i = tKk}, NtKk ≡

n∑
i=1

1{TKk
i = tKk}, Ê[Yi | TKk

i = tKk ] ≡ 1

NtKk

∑
i∈S(tKk )

Yi.

Then, from ∂L

∂βββ
KJ

tKJ

= 0 for all tKJ ,

∂L

∂βββKJ

tKJ

=
∑

i∈S(tKk )

−2

(
Yi − µ−

J∑
j=1

Lj−1∑
`=0

βj`1{Tij = `} −
J−1∑
j=1

∑
j′>j

Lj−1∑
`=0

Lj′−1∑
m=0

βjj
′

`m1{Tij = `, Tij′ = m}

−
J∑
k=3

∑
Kk⊂KJ

∑
tKk

βKk

tKk
1{TKk

i = tKk}
)

= 0. (23)

Therefore, for all tKJ ,

µ̂+
J∑
k=1

∑
Kk⊂KJ

∑
tKk

βKk

tKk
1{tKk ⊂ tKJ} = Ê[Yi | TKJ

i = tKJ ].

For the first-order effect, we can use the weighted zero-sum constraints for all

factors except for the j th factor. In particular, for all j and tj` ∈ tKJ ,

∑
j′ 6=j

Lj′−1∑
`=0

∏
tj′`∈tKJ\j

Pr(Tij′ = `)

{
µ̂+

J∑
k=1

∑
Kk⊂KJ

∑
tKk

βKk

tKk
1{tKk ∈ tKJ}

}

=
∑
j′ 6=j

Lj′−1∑
`=0

∏
tj′`∈tKJ\j

Pr(Tij′ = `) Ê[Yi | Tij = `,T
KJ\j
i = tKJ\j]

⇐⇒ β̂j` =
∑
j′ 6=j

Lj′−1∑
`=0

∏
tj′`∈tKJ\j

Pr(Tij′ = `) Ê[Yi | Tij = `,T
KJ\j
i = tKJ\j]− µ̂.

In general, for all tKk ,Kk ⊂ KJ and k ≥ 2,

β̂Kk

tKk
=

∑
j′∈KJ\Kk

Lj′−1∑
`=0

∏
tj′`∈tKJ\Kk

Pr(Tij′ = `) Ê[Yi | TKk
i = tKk ,T

KJ\Kk

i = tKJ\Kk ]

−
∑
Kp⊂Kk

∑
tKp

1{tKp ⊂ tKk}β̂Kp

tKp − µ̂. (24)

In addition, µ̂ is given as follows.

µ̂ =
K∑
j=1

Lj−1∑
`=0

∏
tj`∈tKJ

Pr(Tij = `) Ê[Yi | TKJ
i = tKJ ].
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Therefore, (µ̂, β̂ββ) is uniquely determined. To confirm this solution is the minimizer

of the optimization problem, we check all the equality conditions. For all tKk ,Kk ⊂

KJ , j ∈ Kk and k ≥ 1,

Lj−1∑
`=0

Pr(Tij = `)1{tj = `}β̂Kk

tKk

=

Lj−1∑
`=0

Pr(Tij = `)1{tj = `}
∑

j′∈KJ\Kk

Lj′−1∑
`=0

∏
tj′`∈tKJ\Kk

Pr(Tij′ = `) Ê[Yi | TKk
i = tKk ,T

KJ\Kk

i = tKJ\Kk ]

−
Lj−1∑
`=0

Pr(Tij = `)1{tj = `}
∑
Kp⊂Kk

∑
tKp

1{tKp ⊂ tKk}β̂Kp

tKp − µ̂

=
∑

j′∈{j,KJ\Kk}

Lj′−1∑
`=0

∏
tj′`∈t{j,KJ\Kk}

Pr(Tij′ = `) Ê[Yi | TKk\j
i = tKk\j,T

{j,KJ\Kk}
i = t{j,KJ\Kk}]

−
∑

Kp⊆Kk\j

∑
tKp

1{tKp ⊆ tKk\j}β̂Kp

tKp − µ̂

= 0,

where the final equality comes from equation (24) for β̂
Kk\j
tKk\j .

Furthermore, equation (23) implies all other equalities in equation (22). Therefore,

the solution (equations (24) and (25)) satisfies all the equality conditions. Finally,

we show that these estimators are unbiased for the AMEs and the AMIEs. Since

Ê[Yi | TKJ
i = tKJ ] is an unbiased estimator of E[Yi(t

KJ )],

E[β̂Kk

tKk
] =

∑
j′∈KJ\Kk

Lj′−1∑
`=0

∏
tj′`∈tKJ\Kk

Pr(Tij′ = `) E[Yi(t
Kk , tKJ\Kk)]

−
∑
Kp⊂Kk

∑
tKp

1{tKp ⊂ tKk}E[β̂
Kp

tKp ]− µ̂,

E[β̂Kk

tKk
− β̂Kk

t
Kk
0

] =
∑

j′∈KJ\Kk

Lj′−1∑
`=0

∏
tj′`∈tKJ\Kk

Pr(Tij′ = `) E[Yi(t
Kk , tKJ\Kk)− Yi(tKk

0 , tKJ\Kk)]

−
∑
Kp⊂Kk

∑
tKp

1{tKp ⊂ tKk}E[β̂
Kp

tKp − β̂
Kp

t
Kp
0

]

= πKk
(tKk ; tKk

0 ).

2
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B Supplementary Appendix: Proofs of Lemmas

For the sake of completeness, we prove all the lemmas used in the mathematical

appendix above.

B.1 Proof of Lemma 1

To simplify the proof, we start from Lemma 1 and prove it is equivalent to Definition 3.

We prove it by induction. Equation (7) shows this correspondence holds for K = 2.

Next, choose any K ≥ 2 and assume that this relationship holds. That is, we assume

the following equality,

ξKK
(t; t0) = τKK

(t; t0) −
K−1∑
k=1

∑
Kk⊆KK

ξKk
(tKk ; tKk

0 | T
KK\Kk

i = t
KK\Kk

0 ), (25)

where the second summation is taken over all possible Kk ⊆ KK = {1, . . . , K} with

|Kk| = k.

Using the definition of the K-way AIE in Lemma 1, we have,

K−1∑
k=1

∑
Kk⊆KK

ξ{Kk,K+1}(t
Kk , tK+1; t

Kk
0 , t0,K+1 | T

KK\Kk

i = t
KK\Kk

0 )

=
K−1∑
k=1

∑
Kk⊆KK

ξKk
(tKk ; tKk

0 | Ti,K+1 = tK+1,T
KK\Kk

i = t
KK\Kk

0 )

−
K−1∑
k=1

∑
Kk⊆KK

ξKk
(tKk ; tKk

0 | Ti,K+1 = t0,K+1,T
KK\Kk

i = t
KK\Kk

0 ), (26)

where ξ{Kk,K+1}(t
Kk , tK+1; t

Kk
0 , t0,K+1 | T

KK\Kk

i = t
KK\Kk

0 ) denote the conditional (k+

1)-way AIE that includes the set of k treatments, Kk, as well as the (K + 1)th

treatment while fixing T
KK\Kk

i to t
KK\Kk

0 . Therefore, we have,

ξKK+1
(tKK+1 ; t

KK+1

0 )

= ξKK
(tKK ; tKK

0 | Ti,K+1 = tK+1)− ξKK
(tKK ; tKK

0 | Ti,K+1 = t0,K+1)

= τKK+1
(tKK , tK+1; t

KK
0 , tK+1)− τKK+1

(tKK , t0,K+1; t
KK
0 , t0,K+1)
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−
K−1∑
k=1

∑
Kk⊆KK

ξ{Kk,K+1}(t
Kk , tK+1; t

Kk
0 , t0,K+1 | T

KK\Kk

i = t
KK\Kk

0 )

= τKK+1
(tKK , tK+1; t

KK
0 , tK+1)−

K∑
k=1

∑
Kk⊆KK

ξKk
(tKk ; tKk

0 | T
KK+1\Kk

i = t
KK+1\Kk

0 )

−
K−1∑
k=1

∑
Kk⊆KK

ξ{Kk,K+1}(t
Kk , tK+1; t

Kk
0 , t0,K+1 | T

KK\Kk

i = t
KK\Kk

0 ), (27)

where the second equality follows from equation (26), and the third equality is based

on the application of the assumption given in equation (25) while conditioning on

Ti,K+1 = t0,K+1.

Next, consider the following decomposition,

K∑
k=1

∑
Kk⊆KK+1

ξKk
(tKk ; tKk

0 | T
KK+1\Kk

i = t
KK+1\Kk

0 )

=
K∑
k=1

∑
Kk⊆KK

ξKk
(tKk ; tKk

0 | T
KK+1\Kk

i = t
KK+1\Kk

0 )

+
K−1∑
k=1

∑
Kk⊆KK

ξ{Kk,K+1}(t
Kk , tK+1; t

Kk
0 , t0,K+1 | T

KK\Kk

i = t
KK\Kk

0 )

+ ξ(K+1)(tK+1; t0,K+1 | T
KK

i = tKK
0 ), (28)

where the first term corresponds to the cases with K + 1 ∈ KK+1 \ Kk, while the

second and third terms together represent the cases with K + 1 ∈ Kk. Note that

these two cases are mutually exclusive and exhaustive. Finally, note the following

equality,

τKK+1
(tKK , tK+1; t

KK
0 , tK+1) = τKK+1

(tKK+1 ; t
KK+1

0 ) − ξ(K+1)(tK+1; t0,K+1 | T
KK

i = tKK
0 ).

Then, together with equations (27) and (28), we obtain, the desired result,

ξKK+1
(tKK+1 ; t

KK+1

0 ) = τKK+1
(tKK+1 ; t

KK+1

0 ) −
K∑
k=1

∑
Kk⊆KK+1

ξKk
(tKk ; tKk

0 | T
KK+1\Kk

i = t
KK+1\Kk

0 ).

Thus, the lemma holds for any K ≥ 2. 2
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B.2 Proof of Lemma 2

To begin, we prove the following equality by mathematical induction.

ξKK
(T̃Kk , tKK\Kk ; tKK

0 )

= ξKK\Kk
(tKK\Kk , t

KK\Kk

0 | T̃Kk) +
k∑
`=1

(−1)`
∑
K`⊆Kk

ξKK\Kk
(tKK\Kk , t

KK\Kk

0 | T̃Kk\K` ,T
K`

i = tK`
0 ).

(29)

First, it is clear that this equality holds when k = 1. That is, for a given K1, we have,

ξKK
(T̃K1 , tKK\K1 ; tKK

0 )

= ξKK\K1(t
KK\K1 ; t

KK\K1

0 | T̃i
K1

= t̃K1)− ξKK\K1(t
KK\K1 ; t

KK\K1

0 | TK1
i = tK1

0 ). (30)

Now, assume that the equality holds for k. Without loss of generality, we suppose

Kk = {1, 2, . . . , k} and Kk+1 = {1, 2, . . . , k, k + 1}. By the definition of the K-way

AIE,

ξKK
(T̃Kk+1 , tKK\Kk+1 ; tKK

0 )

= ξKK\(k+1)(T̃
Kk , tKK\Kk+1 ; t

KK\(k+1)
0 | T̃ k+1

i )− ξKK\(k+1)(T̃
Kk , tKK\Kk+1 ; t

KK\(k+1)
0 | T k+1

i = tk+1
0 )

= ξKK\Kk+1
(tKK\Kk+1 ; t

KK\Kk+1

0 | T̃i
Kk+1

)

+
k∑
`=1

(−1)`
∑
K`⊆Kk

ξKK\Kk+1
(tKK\Kk+1 , t

KK\Kk+1

0 | T̃Kk+1\K` ,T
K`

i = tK`
0 )

− ξKK\Kk+1
(tKK\Kk+1 ; t

KK\Kk+1

0 | T̃i
Kk
, T k+1

i = tk+1
0 )

+
k∑
`=1

(−1)`+1
∑
K`⊆Kk

ξKK\Kk+1
(tKK\Kk+1 , t

KK\Kk+1

0 | T̃Kk\K` ,T
K`

i = tK`
0 , T k+1

i = tk+1
0 ),

(31)

where the second equality follows from the assumption.

Next, consider the following decomposition.

k+1∑
`=1

(−1)`
∑

K`⊆Kk+1

ξKK\Kk+1
(tKK\Kk+1 , t

KK\Kk+1

0 | T̃Kk+1\K` ,T
K`

i = tK`
0 )
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=
k∑
`=1

(−1)`
∑
K`⊆Kk

ξKK\Kk+1
(tKK\Kk+1 , t

KK\Kk+1

0 | T̃Kk+1\K` ,T
K`

i = tK`
0 )

− ξKK\Kk+1
(tKK\Kk+1 ; t

KK\Kk+1

0 | T̃i
Kk
, T k+1

i = tk+1
0 )

+
k∑
`=1

(−1)`+1
∑
K`⊆Kk

ξKK\Kk+1
(tKK\Kk+1 , t

KK\Kk+1

0 | T̃Kk\K` ,T
K`

i = tK`
0 , T k+1

i = tk+1
0 ),

(32)

where the first term corresponds to the case in which K` ⊆ Kk+1 in the left side of the

equation does not include the (k + 1)th treatment, and the second and third terms

jointly express the case in which K` ⊆ Kk+1 in the left side of the equation does

include the (k + 1)th treatment.

Putting together equations (31) and (32), we have,

ξKK
(T̃Kk+1 , tKK\Kk ; tKK

0 )

= ξKK\Kk
(tKK\Kk+1 , t

KK\Kk+1

0 | T̃Kk+1)

+
k+1∑
`=1

(−1)`
∑

K`⊆Kk+1

ξKK\Kk+1
(tKK\Kk+1 , t

KK\Kk+1

0 | T̃Kk+1\K` ,T
K`

i = tK`
0 ).

Therefore, equation (29) holds in general. Finally, under Assumption 2,∫
FKk

ξKK
(T̃Kk , tKK\Kk ; tKK

0 )dF (T̃Kk)

=

∫
FKk

ξKK\Kk
(tKK\Kk , t

KK\Kk

0 | T̃Kk)dF (T̃Kk)

+
k∑
`=1

(−1)`
∑
K`⊆Kk

∫
FKk

ξKK\Kk
(tKK\Kk , t

KK\Kk

0 | T̃Kk\K` ,T
K`

i = tK`
0 )dF (T̃Kk)

= ξKK\Kk
(tKK\Kk , t

KK\Kk

0 )

+
k∑
`=1

(−1)`
∑
K`⊆Kk

{∫
FKk\K`

∫
FK`

ξKK\Kk
(tKK\Kk , t

KK\Kk

0 | T̃Kk\K` ,T
K`

i = tK`
0 )dF (T̃K` | T̃Kk\K`)dF (T̃Kk\K`)

}

= ξKK\Kk
(tKK\Kk , t

KK\Kk

0 )

+
k∑
`=1

(−1)`
∑
K`⊆Kk

∫
FKk\K`

ξKK\Kk
(tKK\Kk , t

KK\Kk

0 | T̃Kk\K` ,T
K`

i = tK`
0 )dF (T̃Kk\K`).

This completes the proof of Lemma 2. 2
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B.3 Proof of Lemma 3

We prove the lemma by induction. For K = 2, equation (7) shows that the lemma

holds. Choose any K ≥ 2 and assume that the lemma holds for all k with 1 ≤ k ≤ K.

Then,

ξKK
(tKK ; tKK

0 | Ti,K+1 = tK+1)

= τKK+1
(tKK , tK+1; t

KK
0 , tK+1) +

K−1∑
k=1

(−1)K−k
∑
Kk⊆KK

τKk
(tKk , tK+1; t

Kk
0 , tK+1 | T

KK\Kk

i = t
KK\Kk

0 )

= τKK+1
(tKK , tK+1; t

KK
0 , tK+1)

+
K−1∑
k=1

(−1)K−k
∑
Kk⊆KK

[
τ{Kk,K+1}(t

Kk , tK+1; t
Kk
0 , t0,K+1 | T

KK\Kk

i = t
KK\Kk

0 )

− τK+1(tK+1; t0,K+1 | T
KK+1\ (K+1)

i = t
KK+1\ (K+1)
0 )

]
= τKK+1

(tKK , tK+1; t
KK
0 , tK+1)

+
K−1∑
k=1

(−1)K−k
∑
Kk⊆KK

τ{Kk,K+1}(t
Kk , tK+1; t

Kk
0 , t0,K+1 | T

KK\Kk

i = t
KK\Kk

0 )

+
K−1∑
k=1

(−1)K−k+1

(
K

k

)
τK+1(tK+1; t0,K+1 | T

KK+1\ (K+1)

i = t
KK+1\ (K+1)
0 ). (33)

Next, note the following decomposition,

ξKK+1
(tKK+1 ; t

KK+1

0 ) = ξKK
(tKK ; tKK

0 | Ti,K+1 = tK+1)− ξKK
(tKK ; tKL

0 | Ti,K+1 = t0,K+1)

= ξKK
(tKK ; tKK

0 | Ti,K+1 = tK+1)

−
K∑
k=1

(−1)K−k
∑
Kk⊆KK

τKk
(tKk ; tKk

0 | T
KK+1\Kk

i = t
KK+1\Kk

0 ).

Substituting equation (33) into this equation, we obtain

ξKK+1
(tKK+1 ; t

KK+1

0 )

= τKK+1
(tKK , tK+1; t

KK
0 , tK+1)−

K∑
k=1

(−1)K−k
∑
Kk⊆KK

τKk
(tKk ; tKk

0 | T
KK+1\Kk

i = t
KK+1\Kk

0 )
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+
K−1∑
k=1

(−1)K−k
∑
Kk⊆KK

τ{Kk,K+1}(t
Kk , tK+1; t

Kk
0 , t0,K+1 | T

KK\Kk

i = t
KK\Kk

0 )

+
K−1∑
k=1

(−1)K−k+1

(
K

k

)
τK+1(tK+1; t0,K+1 | T

KK+1\ (K+1)

i = t
KK+1\ (K+1)
0 )

= τKK+1
(tKK , tK+1; t

KK
0 , tK+1)−

K∑
k=2

(−1)K−k
∑

Kk⊆KK+1

τKk
(tKk ; tKk

0 | T
KK+1\Kk

i = t
KK+1\Kk

0 )

+ (−1)K
∑
K1⊆KK

τK1(t
K1 , tK1

0 | T
KK+1\ K1

i = t
KL+1\ K1

0 )

+
K−1∑
k=1

(−1)K−k+1

(
K

k

)
τK+1(tK+1; t0,K+1 | T

KK+1\ (K+1)

i = t
KK+1\ (K+1)
0 )

= τKK+1
(tKK+1 ; t

KK+1

0 )− τK+1(tK+1; t0,K+1 | T
KK+1\ (K+1)

i = t
KK+1\ (K+1)
0 )

−
K∑
k=2

(−1)K−k
∑

Kk⊆KK+1

τKk
(tKk ; tKk

0 | T
KK+1\Kk

i = t
KK+k\Kk

0 )

+ (−1)K
∑
K1⊆KK

τK1(t
K1 , tK1

0 | T
KK+1\ K1

i = t
KK+1\ K1

0 )

+
K−1∑
k=1

(−1)K−k+1

(
K

k

)
τK+1(tK+1; t0,K+1 | T

KK+1\ (K+1)

i = t
KK+1\ (K+1)
0 )

=
K+1∑
k=1

(−1)K−k+1
∑

Kk⊆KK+1

τKk
(tKk ; tKk

0 | T
KK+1\Kk

i = t
KK+1\Kk

0 ),

where the final equality follows because

−1 +
K−1∑
k=1

(−1)K−k+1

(
K

k

)
= (−1)K .

Thus, by induction, the theorem holds for any K ≥ 2. 2

B.4 Proof of Lemma 4

We prove the lemma by induction. For K = 2, equation (7) shows this theorem holds.

Choose any K ≥ 2 and assume that the lemma holds for all k with 1 ≤ k ≤ K. That

is, let Kk ⊆ KK = {1, . . . , K} with |Kk| = k where k = 1, . . . , K, and assume the

following equality,

πKk
(tKk ; tKk

0 ) =
k∑
`=1

(−1)k−`
∑
K`⊆Kk

τK`
(tK` ; tK`

0 ).
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Using this assumption as well as the definition of the K-way AMIE given in Defini-

tion 2, we have,

πKK+1
(tKK+1 ; t

KK+1

0 ) = τKK+1
(tKK+1 ; t

KK+1

0 )−
K∑
k=1

∑
Kk⊆KK+1

πKk
(tKk ; tKk

0 )

= τKK+1
(tKK+1 ; t

KK+1

0 ) +
K∑
k=1

∑
Kk⊆KK+1

k∑
`=1

(−1)k+1−`
∑
K`⊆Kk

τK`
(tK` ; tK`

0 ).

(34)

Next, we determine the coefficient for τKm(tKm ; tKm
0 ) in the second term of equa-

tion (34) for each m with 1 ≤ m ≤ K. Note that τKm(tKm ; tKm
0 ) would not appear in

this term if m > k. That is, for a given m, we only need to consider the cases where

the index for the first summation satisfies m ≤ k ≤ K. Furthermore, for any given

such k, there exist
(
K+1−m
k−m

)
ways to choose Kk in the second summation such that

Km ⊆ Kk. Once such Kk is selected, Km appears only once in the third and fourth

summations together and is multiplied by (−1)k+1−m. Therefore, the coefficient for

τKm(tKm ; tKm
0 ) is equal to,

K∑
k=m

(−1)k+1−m
(
K + 1−m
k −m

)
= (−1)K+1−m.

Putting all of these together,

πKK+1
(tKK+1 ; t

KK+1

0 ) = τKK+1
(tKK+1 ; t

KK+1

0 ) +
K∑
k=1

(−1)K+1−k
∑

Kk⊆KK+1

τKk
(tKk ; tKk

0 )

=
K+1∑
k=1

(−1)K+1−k
∑

Kk⊆KK+1

τKk
(tKk ; tKk

0 ).

Since the theorem holds for K + 1, we have shown that it holds for any K ≥ 2. 2
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