A Mathematical Appendix: Proofs of Theorems

A.1 Lemmas

Below, we describe all the lemmas, which are used to prove the main theorems of this

paper. For completeness, their proofs appear in the supplementary appendix.

LEMMA 1 (AN ALTERNATIVE DEFINITION OF THE K-WAY AVERAGE INTERACTION EFFECT)
The K -way average interaction effect (AIE) of treatment combination THE = t1E =
(t1,...,tx) relative to baseline condition TrE = ti'5 = (to1,...,tox), given in Defi-

nition [3, can be rewritten as,

G (Et05) = &g (BT, t(l):(Kfl) | Tix = ti) — 51:(K71)(t1:(K_1);t(l):(Kfl) | Tix = tok).
LEMMA 2 Under Assumption[d, for any k =1,..., K, the following equality holds,

= ) = Kx\K
/}'/Ck Sk (TICk ) eV ) tl()CK)dF(TICk) = S’CK\’Ck (tICK\ICk> to 1€\ k)

+) (-1)
(=1

Z / G, (E9 S gV | DO T — ) d (TR,

LEMMA 3 (DECOMPOSITION OF THE K-WAY AIE) The K-way Average Treatment
Interaction Effect (AIE) (Definition [3), can be decomposed into the sum of the K-
way conditional Average Treatment Combination Effects (ACEs). Formally, let Ky, C
Kk ={1,...,K} with |Ky| = k where k = 1,..., K. Then, the K-way AIE can be

written as follows,

K
G (B 65 = SO (=)F ST e (8 5 | T = gV,
k=1 KiCKg

where the second summation is taken over the set of all possible Ky and the k-way
conditional ACE is defined as,

Ticy (8% ¢ | TV = g\ E{ V(5% ¢V TRy v e Q’CK»dF(IfK)}

Frr

LEMMA 4 (DECOMPOSITION OF THE K-wAY AMIE) The K-way Average Marginal
Treatment Interaction Effect (AMIE), defined in Definition[d, can be decomposed into
the sum of the K-way Average Treatment Combination Effects (ACEs). Formally, let
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Kr CKx ={1,...,K} with || = k where k =1,..., K. Then, the K-way AMIE

can be written as follows,

K

T (F5667) = Y (=D Y 7 (t 857,

k=1 KrCKk

where the second summation is taken over the set of all possible ICy.

A.2 Proof of Theorem

We use proof by induction. Under Assumption 2 we first show for K = 2. To simplify
the notation, we do not write out the J —2 factors that we marginalize out. We begin

by decomposing the AME as follows,
alar,ag) = / E{Y(ar, By) — Yi(ap, B)} dF(B,)
B
= E{Yi(az, bo) - Yi(ao, bo)} + / ]E{Yi(ae, Bi) - Yi(ao, Bi) - Yz’(ae, bo) + Y;'(aoa bo)} dF(Bz')
B
= E{Yi(as, bo) — Yi(ao, bo)} + / Easlag, Bi; ag,by) dF(B;).
B

Similarly, we have 1 (bn, bo) = B{Y;(ao, bm)—Yi(ao, bo) }+ [ 1 Ea (A, b ao, bo) dF (A;).

Given the definition of the AMIE in equation (), we have,

Ta(ag, b, ag, by) = E{Yi(as, bin) — Yi(ao, bo)} — a(ae, ag) — ¥(bm, bo)

— €an(ap, by o, by) — / Eanla, B ag, bo) dF(B:) — / Ean(Au, b a0, bo) dF(Ay).
B A

This proves that the AMIE is a linear function of the AIEs. We next show that the

AIE is also a linear function of the AMIEs.

éAB(az, b G, bo) = E[Y;(ag, bm) - Y%(CLo? bo)] - ¢A<a€7 Clo) - wA(bm, bo)
— E[Yi(a¢, bo) — Yi(ao, bo)] + v a(ar, ag) — E[Yi(ao, by) — Yi(ao, bo)] 4+ ¢ a(bm, bo)

= 7TAB(G£7 bi; ag, bo) - WAB(af, bo; ag, bo) - 7TAB(CL07 bi; ag, bo)~

Thus, we obtain the desired results for K = 2.
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Now we show that if the theorem holds for any K with K > 2, it also holds for

K + 1. First, using Lemma [2| we rewrite the equation of interest as follows,

Mo (89 457) = €, (895 657) +Z D IR

KrCKk
k
2.1
/=1

Utilizing the the definition of the K-way AMIE given in Definition [2|and the assump-

> / Sy (9 gV | TR T tg@)dF(T'Ck\W}.
K CKy, &

tion that the theorem holds for K, we have,
K
K K
T (B9 807) = T, (B9 807 ) = Y Y 0 e, (8% 65%)
k=1 KxCKKk 11

= T’CK+1 (thm+ tOICKJrl)

k—1
- i, ( t’ck t’ck )+ £k (t’Ck\/Cm’tIOCk\’Cm)
\

k= IICkC’CK+1 =1 IC Qle

+Z( Z /)c \Ky e (65 b ! | Them\Re T ty*)dF (T* \KZ)}].
=1

KeChom
(17)

After rearranging equation (17)), the coefficient for &k, \x, (trr1\u t’CK+1\’C )

is equal to (—1)“. Similarly, the coefficient of the following term is equal to (—1)“*".
uw K ’Cu T u v 0% _ ’CU T ” v
/]-"’Cu\lcy Excre1vic, (FrH Vg Vo | PR, TR — gl g (TR

Therefore, we can rewrite equation as follows,

Thk 1 (t/CK+1 : tO’CK+1 )

K
N K K
= TKg1 (t}CK+1;tO K+1) —+ Z(_l)k Z |:£ICK+1\/Ck(t’CK+1\Kk7tO K41\ k)
k=1 KrCKr+1

k—1
Krca\K e
=1 ¢ CKk

K
= &K (tICK+1§ tOICKH) + Z(—l)k Z {&CKH\Kk (tKK-H\ICk, tOICK+1\’Ck)
k=1 KrCKr 41

k
3 Ki41\K e
+ Z<_1)€ /Kk\)ce §ICK+1\ICk(t’CK+1\Kk t K+1\Kk | TICk\ICz T z)dF(TICk\ICZ):|
=1 KeCK
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_ &CK_H (tICK+1; tOKKH) + Z(_l)k Z f(T}C’“, t’CK+1\’Ck; tO’CKH)dF(TICk)7

K
k=1 KrCKK 11

where the second equality follows from applying Lemmall|to 7ic,,, (t*#+1; th1) and

the final equality from Lemma [2] This proves that the K-way AMIE is a linear
function of the K-way AlEs.

We next prove that the K-way AIE can be written as a linear function of the
K-way AMIEs. We will show this by mathematical induction. We already show the
desired result holds for K = 2. Choose any K > 2 and assume that the following

equality holds,

K

o (1 657) = D (=1 3T e (6% Ve ).
k=1 KrCKx

Using the definition of the K-way AIE given in Lemma [T we have

K
Sicieny (€180 ™) = Gy (F59 467 [ T = 790 — g (850697 | TR = 157)
K
- (_1)K_k Z TK k41 (t’Ck’ tOICK\ICk7 tK+1; tOIC,C ) tZJCK\’Ck7 tK+1)
k=1 KirCKxk

K
- Z<_1)K_k Z TKK+1 (th ) tOKK\’CkJ t(IJ(—H; t:JCkv tOICK\KkJ té(+1)7
k=1 KrCKk

where the second equality follows from the assumption. Let us consider the following

decomposition.
K+1
K—k+1 Ki +Kr+1\Ki, 1K (Krr1\Kg
E (_1> E: 7T’CK+1(t 7t0 7t0 7t0 )
k=1 KrCKK 11

K
= Z(_l)K_k Z 7TICK+1 (t’ck7 tOICK\K:k7 tK+1’ tgk ? tZ]CK\ICk’ t£(+1) + (_1)K7TKK+1 (tZ]CK ? tK+1’ tOICK’ té(+1)
k=1 KrCKk

K
F S DTS e (65 VR g gl gl i) (18)
k=1 KrCKk

where the first and second terms together represent the cases with K + 1 € Ky, while
the third term corresponds to the cases with K + 1 € Kx,1 \ Ki. Note that these

two cases are mutually exclusive and exhaustive. Finally, note the following equality,

K

Z(_l)K_k Z WKKH(th’tOICK\}Ck7tK+1;t{)CkthJCK\’Ck’tK+1)
k=1 KrCKxk
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K
= D DD e (8% 6 T 6 ) (1) g (667 £ 6 1.

k=1 KiCKx
(19)
Then, together with equations and , we obtain,
K+1
S (500855 ) = (1) TN e, (% g g 6 ).
k=1 KrCKk+1
Thus, the desired linear relationship holds for any K > 2. O
A.3 Proof of Theorem
To prove the invariance of the K-way AMIE, note that Lemma {| implies,
K
e (tito) — mee(Eito) = D (=DFTF Y me (8. (20)
k=1 KrCKx
K
T (bito) — moe(Bit0) = D (DR DT e (8% 8%, (21)
k=1 KnCKx

Thus, the K-way AMIE is interval invariant. To prove the lack of invariance of the

K-way AIE, note that according to Lemma , we can rewrite equation as follows.

K

PO { T N e R N o T VN t’.f““’”}
k=1 KrCKx

M)~

AN { (6% 65 | T = 85V — e, (B9 ¢ | T = E’.S‘K\’%}'
1 KrCKKk

=
Il

It is clear that this equality does not hold in general because the K-way conditional
ACEs are conditioned on different treatment values. Thus, the K-way AIE is not

interval invariant. O

A.4 Proof of Theorem

We use L to denote the objective function in equation . Since it is a convex
optimization problem, it has one unique solution and the solution should satisfy the
following equalities.

oL oL
— = 0, — =0 forallj, and ¢ € {0,1,...,L; — 1},
o o5}
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OL

= 0, forallj+#j, £€{0,1,...,L; —1} and m € {0,1,...,L; — 1},

OB
oL K
= 0 forall t™*, and K, C K; such that k£ > 3. (22)
aﬁth
For the sake of simplicity, we introduce the following notation.
. . 1
t) = (i T =t} Ny, = Y YT =t} E[Y; | T =t%] = Y;.
S = T =, N = DT =, BT =) = 5 3
1= 1€

Then, from aﬁ’CLJ =0 for all t/,

<
oL J Lj—-1 Lj—1L;—1
> vi-u- XY s =0 - S S i ety = m)
a’Bt’CJ i€eS(tFk) j=1 ¢=0 j=1j§'>j £=0 m=0

J

IPIPILLIC LR

k=3 KirCK;s tKk

Therefore, for all t7,

J
i+ Y Y B vy = E | T =t

k=1 KxCKj tKk

For the first-order effect, we can use the weighted zero-sum constraints for all

factors except for the j th factor. In particular, for all j and ¢;, € t*7,

L/l

>3 I r-nfir Y B St )

j'#5 £=0 t,zet’CJ\J k=1 KxCK s tKk

Li—1

=33 I Pr@y =0 EY; [T =6, TV = ¢*9V]

3'#] =0 4,etoN

L;—1

= B =33 Tl P@y=0 By |Ty=6THY =5V -,

Jj'#j £=0 tirg €t TN

In general, for all t** IC;, C K; and k > 2,
Ly—1

B = Y I Py =0 B T = ¢, T g

F'ER\RE €20 ¢, ets\Fk
= Y 1t c R — (24)
’CpCK:k tp
In addition, i is given as follows.

K Lj,1

S5 I Pe@s =0 Eyi| T =],

J=1 1=0 t;,etFs
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Therefore, (ﬂ,B) is uniquely determined. To confirm this solution is the minimizer
of the optimization problem, we check all the equality conditions. For all t** I, C

ICJ,jGICkandkzl,

Lj—-1

D Pr(Ty = 01{t; = 1}k
=0
L/ 1

= ZPr Ty =01{t; =0} > Z [I Pe@y =0 Ely;| T8 =5 TV

J'ERNKRE £=0 ¢, et \Fk

— Z Pr(Ty = O1{t; =} > Y 1{thr c t}plr —
KpCKi tKp
L]/_l

= Z Z H Pr(Tij, = g) [@[YZ ‘ T’.C’“\j — t’Ck\j’T{jJCJ\Kk} _ t{j,/cj\/ck}]

J'E{GRINCRY =0 ¢, el o \Ck}

i\ A .
STON 1t VB g
KpCKr\j thr

= 0,

where the final equality comes from equation (24 . for BKk\]

AV

Furthermore, equation implies all other equalities in equation (22)). Therefore,
the solution (equations and (25)) satisfies all the equality conditions. Finally,
we show that these estimators are unbiased for the AMEs and the AMIEs. Since
E[Y; | T = t%] is an unbiased estimator of E[Y;(t<7)],

Lj/fl

B = Y S T Pr@y =0 EN(eS, 65

J'ERA\RE £=0 ¢, et \Fk

_ Z Zl{thp C t’Ck}E[ tICp] _

KpCKy t¥p
L]-/fl

BB — %) = Y N [ Pr(Ty =0 Ei(t ¢\ - yi(ele, 0]

t
0 .
JEL\Kr €=0 ¢ _,eet’CJ\’Ck

= Y 1t c o EBR — ]

KpCKyi tKp

= 7Ky (th ; 1DOKIC )
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B Supplementary Appendix: Proofs of Lemmas

For the sake of completeness, we prove all the lemmas used in the mathematical

appendix above.

B.1 Proof of Lemma

To simplify the proof, we start from Lemmal[I]and prove it is equivalent to Definition 3]
We prove it by induction. Equation shows this correspondence holds for K = 2.
Next, choose any K > 2 and assume that this relationship holds. That is, we assume

the following equality,

K-1
Sretito) = Tc(tite) — e, (F9s 650 | T = 6%, (25)
k=1 K),CKx
where the second summation is taken over all possible K C Ky = {1,..., K} with
\KCi| = k.
Using the definition of the K-way AIE in Lemma [} we have,
— =Kr\K
K \K
DD G (% b 6" fo e | T, =t V)
k=1 K4 CKx
= —KCx\K
= Z i, (FF560% | Ty = tiern, T eV tICK\Kk)
k=1 K),CKx
K-1 e
=Y G W | T = toxen, T =), (26)
k=1 K4 CKx

K\

where &g, rer1y (E%, Ereprs to* toxr1 | T tICK\}C’“) denote the conditional (k -+

1)-way AIE that includes the set of k treatments, Ky, as well as the (K + 1)th

K\ s

treatment while fixing Ti K \Kk

to t, Therefore, we have,

(£ 7
K+1 0
= o (F b0 ™ | Thgn = trer) — S (8560 | Ten = to o)

K .4K K 4K
= T’CK+1(t K7tK+1JtOK7tK+1) _TICKJrl(t K7t0,K+17t0K7t0,K+1)
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K-1
R\ Kr\K
0> ey (W s to* to s | T = 6 V)
k=1 KnCKi

K
—K K K K
_ TICKH(t’CKvtK-i-l; tOICK’ tK—f—l) o Z Z €Kk (tICk;tOICk | T, K+1\Kx =t K41\ k)

k=1 K CKk
K-1 .y
DD Gy (e 6 o s | T = 65, (27)
k=1 Kt CKk

where the second equality follows from equation (26), and the third equality is based
on the application of the assumption given in equation (25) while conditioning on
Ti k41 = lo k41
Next, consider the following decomposition,
K
ST T gy

k=1 KxCKKk 11
K

= Z Z f,ck(t/Ck;t{)Ck |T;CK+1\/CI¢ _ tOICK“\’C’“)
k=1 K,CKx
K-1 .
- Z Z g{KkaH}(th»tK+1§tloCk7to,K+1 | T, = tOKK\ICk)
=K
+ §(K+1)(tK+1;t0’K+1 | Tz K tOICK)’ (28>

where the first term corresponds to the cases with K + 1 € Kgyq \ Kk, while the
second and third terms together represent the cases with K + 1 € K;. Note that
these two cases are mutually exclusive and exhaustive. Finally, note the following

equality,
K =K
TICKH(t’CK,tK-i-l;t{)CKatK—i-l) = T/CKH('C’CK“;% YY) — e (rgs o | T; 5 = tIoCK)-
Then, together with equations and , we obtain, the desired result,
- Kx1\K
&CKH(tICKH;thKH) _ TICK+1(t’CK+1;t§K+1) . Z Z &Ck (t’Ck;tOKk | T, K+1\Kx _ tOICK-H\’Ck)‘

k=1 KxCKKk 11

Thus, the lemma holds for any K > 2. a
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B.2 Proof of Lemma

To begin, we prove the following equality by mathematical induction.

G (T 45 )

k
_ fICK\ICk (tICK\’ijtOICK\Kk ’ Tlck) + Z( Z £ICK\ICk (t’CK\’Ck tICK\/Ck | T’Ck\’Cl T the).
/=1 K¢CKg

(29)

First, it is clear that this equality holds when k = 1. That is, for a given Ky, we have,

G (T £ 7)

— g, (PR RV TRy e (R g\ Ry (30)

Now, assume that the equality holds for k. Without loss of generality, we suppose
Kr ={1,2,...,k} and Kpy1 = {1,2,...,k, k + 1}. By the definition of the K-way

AIE

?

fICK (’i"%ﬂ : XK Kt ; tOICK)

~d K k ad d K k
= Eicer o) (T RN g AIED ) PRy e (TR g0\ AL pht gkt
~ IC
= g’CK\KkH(t’CK\KkH; tOICK\KH1 ’ T; k+l>
F IC
F3 1Y Gy, (F5 W g Vore | PR\ T g
KeCKy,
= Gy (R VO Ve S T — g

k
Kr\K K
+Z(_ £+1 Z £KK\Kk+1(t’CK\’Ck+1 £ K\Kkt1 |T’Ck\lcl T =& Tk+1 _tk+1)
— Ko CK

(31)
where the second equality follows from the assumption.

Next, consider the following decomposition.

k+1
Z Z g’CK\Kk+1 (tKK\KkH t,CK\KkH ’TK}CH\KZ T Ké)
/=1 K[C’Ck;Jrl
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k
- Z(_l)é Z éK:K\’Ck-H (t’CK\ICkJr1>tZJCK\Kk+1 | TICHl\,Q?T;CZ = tOKZ)
/=1 K¢CKg

LG el b VR FaaE

k
Kr\K K
£ DD G (B gV DO g T ),
= KeCKy,

(32)
where the first term corresponds to the case in which I, C K, in the left side of the
equation does not include the (k + 1)th treatment, and the second and third terms
jointly express the case in which Ky C Ky in the left side of the equation does

include the (k + 1)th treatment.

Putting together equations and , we have,

&CK (’i‘lck+1 7 tICK\ICk; tO’CK)

= Sy (5 S gy Vo | TR
k+1
FD D YT G (65 S g TR T = ),

KeCKit1

Therefore, equation holds in general. Finally, under Assumption

/ iy (T, 65V R ) (5
? k

= [, G (€5 TR (E
f

k

+ Z(_l / Eicievicy, (FEVE, Vo | TRV T =ty )dF(T**)
=1 Koo
= Exc ey (B to’CK\Kk)

Ki\Kr | /f K = < -
w20 2 {/f\ /f iy, (8 g VO | TRV T = 65) AP (T | T“k\ﬁﬂ)dF(T’C“"”“)}

k
(=1 KeCKy

= SKK\]Ck (tKK\’Ck7 té)CK\ICk)
k
DG / o S (E5R VO V0 | R T g dp (T,
=1 KoCK
This completes the proof of Lemma 2] a
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B.3 Proof of Lemma

We prove the lemma by induction. For K = 2, equation shows that the lemma
holds. Choose any K > 2 and assume that the lemma holds for all k£ with 1 < k < K.

Then,

Eice (675 tOICK | T k41 = trs1)

K—1
_ K \C Kr\K
= T’CK-H(t}CK?tK-‘rl;tO’CK?tK-‘rl) + E (_1)K g E Tle(thatK+l?tg)Ck>tK+l | 'T; = 130K\ ")
k=1 KrCKx

KK LK
= T’CK-H(t KvtK-‘rlatOK?tK—i-l)

K-1

- KK\

+D) (DS {T{Kk,K—H}(thatK—i-l;t:JCkatO,K—i-l | T = gy
k=1 KrCKk

T K+l K K41
— T (txsritog+1 | T e (KD _ t repa\ (K ))

_ K KK
- T/CK+1(t K7tK+1;t0 7tK+1)

K-1
- =K \K
+ Z(_1>K ’ Z T{’CmKH}(thJKH;toKk,to,KH | 'T; e th\Kk>
k=1 KrCKk
S K Kici1\ (K+1)
- o +
+) (=D* k+1(k)TK+1(tK+1; toer | ;T — g Dy, (33)

o

=1

Next, note the following decomposition,

flcml(t’CK“Etf)CKH) = &k, (85 toICK | T k1 = tresn) — S (B to’CL | Ti k41 = to,k+1)

= ki (tKK5t0KK | Ti k1 = tis1)

K
_ Z(_l)K—k Z T (tlck.t{)ck |T"CK+1\’C1¢ _ téCKﬂ\le)
k Y 7 .
k=1 KrCKk

Substituting equation into this equation, we obtain

€’CK+1 (tICK+1 ; tOICKJr:l )

K
e (i )~ (DR S e (e TE gy
k=1 KrCKK
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?

K \K Kx\K
+ ( K ¥ Z T{ICk,K+1}(t k tK+17t0 >t0K+1 | T K\ :tOK\ k)

’CkCICK

o
ey

=

_ K =K K+1
+ (_1)K k+1 ( f ) TK+1(tK+1, tO Kl | T K41\ ( ) tOICK-H\ (K+1))
=1

o

K—k Ki. 1K, | CE+1\KE _  Krp1\Ke
E , i (85 80 | T =t )
k=2 KrCKK+1

_1)K Z i, (tlcl tOKl | TICKJrl\ K1 t/CL+1\ K1>
K1CKk

tﬂw

K LK
= T’CK-H(t K’tK+l7tOK7tK+1)_

_|_

—~

=

-1
_ K =K K+1
+ (_1)K k+1 ( L ) TK+1(tK+1, tO Kl | T r+1\ ( ) t’CK+1\ (K-l—l))

1

b
Il

= Ty (B9 60 ™4) — T (b tocen | T’CKH\ (D — g (D)
_ Z(_l)K—k Z e, (tICk t/Ck | T’CK-H\’Ck _ tIOCK+k\ICk)
KrCKx 11
(DR DT me (g [T = gt
K1CKx
— K K\ (K+1)
+ Z(—l)K k+1<k)TK+1(tK+17t0 ke | T, 50 = g\ (KD
=1
K41 o
- 5 g g
k=1 KrCKK 11

where the final equality follows because

Thus, by induction, the theorem holds for any K > 2. a

B.4 Proof of Lemma

We prove the lemma by induction. For K = 2, equation ([7)) shows this theorem holds.
Choose any K > 2 and assume that the lemma holds for all k£ with 1 < k£ < K. That
is, let K € K = {1,..., K} with |x| = k where &k = 1,..., K, and assume the

following equality,



Using this assumption as well as the definition of the K-way AMIE given in Defini-

tion [2, we have,

K
ICK+1. ICKJrl _ ICK+1. ICK+1
7T’CK-H (t atO ) - T’CK+1 (t atO ) -
k=

(34)

Next, we determine the coefficient for 7, (t©:t5™) in the second term of equa-
tion for each m with 1 < m < K. Note that i, (t*;t5™) would not appear in
this term if m > k. That is, for a given m, we only need to consider the cases where
the index for the first summation satisfies m < k < K. Furthermore, for any given
such k, there exist (Kljf;zm) ways to choose Ky in the second summation such that
K., € Ki. Once such Ky is selected, K,, appears only once in the third and fourth
summations together and is multiplied by (—1)**1=™. Therefore, the coefficient for

Tic,, (FFm: t5m) s equal to,

é(—wk“-m (") = e

Putting all of these together,

K
TK )1 (tKKH; tOICK-H) = k41 (tKKH;tO’CKH) + Z(_l)K+1_k Z K (tICkS tgk)
k=1 KrCKKk 11
K+1
R DI C L SR (LR 5}
k=1 KrCKx 11

Since the theorem holds for K + 1, we have shown that it holds for any K > 2. O
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