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SM-1 Proof of Theorems

Here, we provide proofs for the theorems presented in the paper.

SM-1.1 Proof of Theorem 1

In this proof, we assume that the separating set W is disjoint with the sampling set XS and

the heterogeneity set XH for simpler notations. The same proof applies to the case in which

some variables of the sampling set or the heterogeneity set are in the separating set. First, we

have

XH ⊥⊥ XS |W, T, S = 1. (1)

From Random Treatment Assignment(Assumption 1), we have

T ⊥⊥ XS |W, S = 1. (2)

Combining equations (1) and (2) (Contraction in Pearl (2000)),

{XH , T} ⊥⊥ XS |W, S = 1,

which implies XH ⊥⊥ XS | W, S = 1. Given that the conditional independence structure of

(XH ,XS ,W) is the same under S = 1 and S = 0 (because S only changes the treatment

assignment), we have

XH ⊥⊥ XS |W, S. (3)

From the definition of the sampling variable,

XH ⊥⊥ S |W,XS . (4)

Combining equations (3) and (4) (Intersection (Pearl, 2000)), we have

XH ⊥⊥ {S,XS} |W,

which implies

XH ⊥⊥ S |W. (5)

Additionally, based on the definition of the heterogeneity set,

Y (1)− Y (0) ⊥⊥ S |W,XH . (6)

Therefore, by combining equations (5) and (6) based on Contraction in Pearl (2000),

{Y (1)− Y (0),XH} ⊥⊥ S |W,

which implies Y (1)− Y (0) ⊥⊥ S |W. 2
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SM-1.2 Proof of Theorem 2

First, we have

Y ⊥⊥ XS |W, T, S = 1. (7)

From Random Treatment Assignment(Assumption 1), we have

T ⊥⊥ XS |W, S = 1. (8)

Combining equations (7) and (8) (Contraction in Pearl (2000)),

{Y, T} ⊥⊥ XS |W, S = 1,

which implies

Y (t) ⊥⊥ XS |W, S = 1. (9)

Given that the conditional independence structure of (Y (1), Y (0),XS ,W) is the same

under S = 1 and S = 0 (because S only changes the treatment assignment, relationship for

potential outcomes and pre-treatment variables would not change), we have

Y (t) ⊥⊥ XS |W, S, (10)

for t = {0, 1}.
From the definition of the sampling variable, for t = {0, 1},

Y (t) ⊥⊥ S |W,XS . (11)

Combining equations (10) and (11) (Intersection in Pearl (2000)), we have

Y (t) ⊥⊥ {S,XS} |W,

which implies

Y (t) ⊥⊥ S |W

for t = {0, 1}. This completes the proof. 2
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SM-2 IPW Estimator

Here, we show that τ̂
p−→ E[Yi(1)− Yi(0) | Si = 0].

Proof First, we rewrite the IPW estimator as follows.

τ̂ =
1

n+m

∑
i SiπipiTiYi

1
n+m

∑
i SiπipiTi

−
1

n+m

∑
i Siπi(1− pi)(1− Ti)Yi

1
n+m

∑
i Siπi(1− pi)(1− Ti)

, (12)

where n (m) is the sample size of the experimental data (the population data). By the law of

large number,

1

n+m

∑
i

SiπipiTi
p−→ E[SiπipiTi] = EW{πi Pr(Si = 1 |Wi)pi Pr(Ti = 1 | Si = 1,Wi)}

= EW

{
Pr(Si = 0 |Wi)

Pr(Si = 0)

}
= 1.

Similarly, 1
n+m

∑
i Siπi(1− pi)(1− Ti)

p−→ 1. Again, by the law of large number,

1

n+m

∑
i

SiπipiTiYi
p−→ E[SiπipiTiYi],

1

n+m

∑
i

Siπi(1− pi)(1− Ti)Yi
p−→ E[Siπi(1− pi)(1− Ti)Yi].

Hence, τ̂
p−→ E[SiπipiTiYi − Siπi(1− pi)(1− Ti)Yi]. We focus on the term on the right.

E
{
πi

(
SipiTiYi − Si(1− pi)(1− Ti)Yi

)}
= EW

{
πiE
{
SipiTiYi − Si(1− pi)(1− Ti)Yi |Wi

}}

= E

{
πi Pr(Si = 1 |Wi)E

{
piTiYi − (1− pi)(1− Ti)Yi | Si = 1,Wi

}}

= E

{
πi Pr(Si = 1 |Wi){piE[TiYi | Si = 1,Wi]− (1− pi)E[(1− Ti)Yi | Si = 1,Wi]}

}

= E

{
πi Pr(Si = 1 |Wi)

(
E[Yi(1) | Si = 1,Wi]− E[Yi(0) | Si = 1,Wi]

)}

= E

{
πi Pr(Si = 1 |Wi)E[Yi(1)− Yi(0) | Si = 1,Wi]

}
= E

{
πi Pr(Si = 1 |Wi)E[Yi(1)− Yi(0) | Si = 0,Wi]

}

= E

{
Pr(Si = 0 |Wi)

Pr(Si = 0)
E[Yi(1)− Yi(0) | Si = 0,Wi]

}

=

∫
W

{
Pr(Si = 0 |Wi)

Pr(Si = 0)
E[Yi(1)− Yi(0) | Si = 0,Wi]

}
p(W)dW

=

∫
W

E[Yi(1)− Yi(0) | Si = 0,Wi]p(W | Si = 0)dW = E[Yi(1)− Yi(0) | Si = 0],

where the first equality follows from the law of conditional expectation given W, the second

from the conditional expectation given S, the third from the linearity of expectation, the fourth

from the conditional expectation given T , the fifth from the linearity of expectation, the sixth

from the definition of separating W, the seventh from the definition of π, the eight from the

rule of expectation, the ninth from Bayes rule, and the tenth from the rule of expectation.
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SM-3 Markov Random Fields: Review

A Markov random field (MRF), also known as an undirected graphical model, is a popular

statistical model that encodes the conditional independence structure over multiple observed

random variables. The main advantage of the MRF is that it encodes the conditional indepen-

dence relationships of many random variables compactly. While many important results have

been derived for MRFs, we focus on one key property, so-called, the global Markov property,

which we use in our paper.

MRFs define the conditional independence relationships via simple graph separation rules

(Lauritzen, 1996). For sets of nodes A, B, and C, A ⊥⊥ B | C if and only if there is no path

connecting A and B when nodes in C are removed from the graph (i.e., nodes in C separates

nodes A and B). For example, in Figure SM-1, suppose A = {V1, V2, V3} and B = {V6, V7}.
Then, if we define C = {V4, V5}, there is no path connecting A and B once nodes in C

are removed from the graph. Therefore, Figure SM-1 encodes the conditional independence

relationship, {V1, V2, V3} ⊥⊥ {V6, V7} | V4, V5.
As emphasized in the paper, we use the MRF as the statistical model to characterize the

conditional independence relationships between observed random variables. We do not use the

MRF as a step to estimate the underlying causal DAG.

V1

V2

V3

V4

V5

V6

V7

Figure SM-1: Example of a Markov Random Field (MRF).
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SM-4 Additional Results on Empirical Analysis

In Section 5, we focused on the inverse probability weighting estimator (equation (10)) to

maintain the clear comparison with the original analysis that uses the weighting approach. In

this section, we report results based on an outcome-model-based estimator1 and a doubly ro-

bust estimator (Dahabreh et al., 2019). In particular, for the outcome-model-based estimator,

we use a fully-interacted linear model. Within the experimental data, we estimate a linear

regression with a specified set of covariates separately for the treatment and control groups.

Then, we use the estimated models to predict potential outcomes under treatment and control

for the target population data. This outcome-model-based estimator is consistent under the

assumption that the outcome model is correctly specified. For the doubly robust estimator,

we use an augmented IPW estimator (Robins et al., 1994; Dahabreh et al., 2019) where the

outcome model is a fully-interacted linear model and the sampling model is a logistic regression

specified in Section 4.3. This doubly robust estimator is consistent if one of the two models

— outcome or sampling models — is correctly specified.

We first extend our analyses in Section 5.1. Table SM-1 reports results based on the

outcome-model-based estimator (an extension of Table 3). Similarly to the case of the IPW

estimator, we find that (1) point estimates based on estimated separating sets are similar

to those based on the original sampling set, and (2) standard errors based on our proposed

estimated separating sets are smaller for 16 out of 17 outcomes. Table SM-2 reports results

based on the doubly robust estimator (an extension of Table 3). Similarly to the cases of

the IPW estimator and the outcome-model-based estimator, we find that (1) point estimates

based on estimated separating sets are similar to those based on the original sampling set,

and (2) standard errors based on our proposed estimated separating sets are smaller for 15

out of 17 outcomes. Therefore, for all three classes of estimators, our proposed approach of

using the estimated separating set improves estimation accuracy. Finally, we also compare

estimates across three classes of estimators in Table SM-3. Across 17 outcomes, we find that

estimates of the PATE are relatively stable across different estimators (none of the differences

in estimates are statistically significant at the conventional 0.05 level), which suggests model

misspecification is of little concern.

We next extend our analyses in Section 5.2. Table SM-4 reports results for Section 5.2 by

comparing estimates from the outcome-model-based estimator and the doubly robust estimator

1For outcome-model-based estimators, it is unclear whether adjusting for a smaller set of covariates leads to

an increase in estimation efficiency; it will depend on how predictive are those covariates. However, at least in

our application, we see below in Table SM-1 that outcome-model-based estimators based on estimated separating

sets have smaller standard errors than those based on the original sampling set for 16 out of 17 outcomes. For

outcome-model-based estimators, another benefit of having a smaller valid separating set is that it is easier for

analysts to model the conditional expectation correctly with a fewer variables — the key necessary assumption

for outcome-model-based estimators. We leave further technical and thorough investigation of outcome-model-

based estimators for future work.
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to estimates from the IPW estimator. While the point estimate for “Agricultural” is unstable

due to a relatively large standard error (the first row in Table SM-4), estimates of the PATE are

relatively stable across different estimators (none of the differences in estimates are statistically

significant at the conventional 0.05 level), which again suggests model misspecification is of

little concern.
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Original Estimated

Sampling Set Separating Set

Estimate S.E. Estimate S.E.

Average employment hours 4.58 2.35 3.57 1.80

Agricultural -0.00 1.61 -1.22 1.45

Nonagricultural 4.58 1.77 4.79 1.45

Skilled trades only 3.70 1.03 4.08 0.86

No employment hours -0.04 0.03 -0.03 0.02

Any skilled trade 0.27 0.05 0.25 0.04

Works mostly in a skilled trade 0.02 0.02 0.04 0.02

Cash earnings 5.20 7.31 8.22 7.02

Durable assets 0.08 0.10 0.06 0.08

Vocational training 0.52 0.05 0.50 0.04

Hours of vocational training 250.32 34.71 280.24 27.43

Business assets 340.79 141.74 367.61 127.23

Maintain records 0.14 0.05 0.14 0.04

Registered 0.03 0.04 0.04 0.03

Pays taxes 0.01 0.05 0.02 0.05

Changed parish 0.04 0.06 -0.02 0.03

Lives in Urban area -0.01 0.03 -0.01 0.03

Table SM-1: Estimates of the PATEs based on Outcome-Model-Based Estimator, comparing

the Original Sampling Set and Estimated Exact Separating Sets. Extension of Table 3 in

Section 5.1.

Original Estimated

Sampling Set Separating Set

Estimate S.E. Estimate S.E.

Average employment hours 2.49 3.16 2.48 2.73

Agricultural -2.27 2.73 -2.08 1.83

Nonagricultural 5.10 2.99 4.56 2.24

Skilled trades only 2.29 1.66 3.71 1.14

No employment hours 0.01 0.03 -0.01 0.03

Any skilled trade 0.24 0.07 0.24 0.06

Works mostly in a skilled trade -0.03 0.03 0.02 0.04

Cash earnings 4.16 8.06 9.02 7.54

Durable assets 0.02 0.15 0.14 0.15

Vocational training 0.49 0.07 0.50 0.05

Hours of vocational training 228.35 50.14 283.26 34.55

Business assets 326.58 178.44 371.18 139.65

Maintain records 0.16 0.07 0.17 0.07

Registered 0.05 0.06 0.06 0.05

Pays taxes -0.02 0.07 0.01 0.07

Changed parish 0.06 0.07 -0.04 0.05

Lives in Urban area 0.01 0.05 -0.01 0.04

Table SM-2: Estimates of the PATEs based on Doubly Robust Estimator, comparing the Orig-

inal Sampling Set and Estimated Exact Separating Sets. Extension of Table 3 in Section 5.1.
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IPW Outcome-Model-based AIPW

Estimator Estimator Estimator

Estimate S.E. Estimate S.E. Estimate S.E.

Average employment hours 4.79 2.39 3.57 1.80 2.48 2.73

Agricultural 0.30 1.69 -1.22 1.45 -2.08 1.83

Nonagricultural 4.49 1.79 4.79 1.45 4.56 2.24

Skilled trades only 4.36 0.99 4.08 0.86 3.71 1.14

No employment hours -0.03 0.03 -0.03 0.02 -0.01 0.03

Any skilled trade 0.27 0.06 0.25 0.04 0.24 0.06

Works mostly in a skilled trade 0.04 0.03 0.04 0.02 0.02 0.04

Cash earnings 12.54 5.11 8.22 7.02 9.02 7.54

Durable assets 0.18 0.13 0.06 0.08 0.14 0.15

Vocational training 0.53 0.05 0.50 0.04 0.50 0.05

Hours of vocational training 337.59 40.77 280.24 27.43 283.26 34.55

Business assets 425.02 135.65 367.61 127.23 371.18 139.65

Maintain records 0.20 0.07 0.14 0.04 0.17 0.07

Registered 0.09 0.05 0.04 0.03 0.06 0.05

Pays taxes 0.05 0.05 0.02 0.05 0.01 0.07

Changed parish -0.01 0.04 -0.02 0.03 -0.04 0.05

Lives in Urban area -0.01 0.04 -0.01 0.03 -0.01 0.04

Table SM-3: Estimates of the PATEs based on Estimated Exact Separating Sets for Three

Estimators. Extension of Section 5.1.

IPW Outcome-Model-based AIPW

Estimator Estimator Estimator

Estimate S.E. Estimate S.E. Estimate S.E.

Agricultural 0.64 1.63 -1.10 1.31 -1.32 1.56

Changed parish 0.05 0.03 0.03 0.03 0.04 0.03

Lives in Urban area -0.02 0.03 -0.02 0.03 -0.01 0.04

Table SM-4: Estimates of the PATEs based on Estimated Marginal Separating Sets for Three

Estimators. Extension of Section 5.2.
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SM-5 Simulation Studies

We turn now to simulations to explore how well the proposed algorithm can recover the PATE.

We first verify that our proposed algorithm can obtain a consistent estimator of the PATE.

More importantly, we find that estimators based on estimated separating sets often have similar

standard errors to the ones based on the true sampling set. Although our approach introduces

an additional estimation step of finding separating sets to relax data requirements for the

target population, it does not suffer from substantial efficiency loss. Both results hold with

and without user constraints on what variables can be measured in the target population.

SM-5.1 Simulation Design

In this subsection, we articulate our simulation design step by step. See the supplementary

material for all the details on the simulation design.

Pre-treatment Covariates and Potential Outcome Model. To consider different types

of separating sets, we assume the causal directed acyclic graph (DAG) in Figure SM-2 that

encodes causal relationships among the outcome, the sampling indicator, and pre-treatment

covariates. In this DAG, there are three conceptually distinct sets that we consider – (1) a

sampling set, X4 and X5, depicted in green, (2) a heterogeneity set, X2 and X3, depicted

in orange, and (3) the minimum separating set, X1, highlighted in purple. Three root nodes

X1, X6, X7 are normally distributed and other pre-treatment covariates are linear functions

of their parents in the DAG. In particular, pre-treatment covariates are generated as follows.

X1 ∼ N (0, 1)

X2 = 0.7×X1 +
√

1− 0.72 × ε2
X3 = 0.7×X1 +

√
1− 0.72 × ε3

X4 = 0.7×X1 +
√

1− 0.72 × ε4
X5 = 0.3×X9 +

√
1− 0.32 × ε5

X6 ∼ N (0, 1)

X7 ∼ N (0, 1)

X8 = −0.7×X2 +
√

1− 0.72 × ε8
X9 = 0.6×X1 +

√
1− 0.62 × ε9
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X1

X2 X3 X4 X5X8X7X6

Minimum Separating Set

Heterogeneity
Set

Sampling
Set

X9

Y ST

Figure SM-2: Causal DAG underlying the simulation study. Note: We consider three concep-
tually distinct sets (1) a sampling set, X4 and X5 (green), (2) a heterogeneity set, X2 and
X3 (orange) and (3) the minimum separating set, X1 (purple). Three root nodes X1, X6,
X7 are normally distributed and other pre-treatment covariates are linear functions of their
parents.

where ε2, ε3, ε4, ε5, ε8, ε9 are drawn independently and identically from a standard normal dis-

tribution, N (0, 1). This results in the following correlation structure for variables X1−X9.

cor(X) =



1.00 −0.70 0.70 0.70 −0.20 0.00 0.00 0.50 −0.70

−0.70 1.00 −0.50 −0.50 0.15 0.00 0.00 −0.70 0.50

0.70 −0.50 1.00 0.50 −0.15 0.00 0.00 0.33 −0.50

0.70 −0.50 0.50 1.00 −0.15 0.00 0.00 0.33 −0.50

−0.21 0.15 −0.15 −0.15 1.00 0.00 0.00 −0.10 0.30

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.50 −0.70 0.33 0.33 −0.10 0.00 0.00 1.00 −0.33

−0.70 0.50 −0.50 −0.50 0.30 0.00 0.00 −0.33 1.00


We then draw the potential outcomes as follows.

Yi(Ti) = 5Ti + 10×X3i × Ti − 10×X2i × Ti +X6i − 3×X8i + εi

where εi ∼ N(0, 1). Thus, the true PATE is set to 5.

Sampling Mechanism and Treatment Assignment. We randomly sample a set of n

units for a randomized experiment. The sampling mechanism is a logit model based on the

sampling set, X4 and X5. The treatment assignment mechanism is defined only for the

experimental sample (Si = 1). After being sampled into the experiment, every unit has the

same probability of receiving the treatment Pr(Ti = 1 | Si = 1) = 0.5. For the sake of

simplicity, we omit an arrow from the sampling indicator S to the treatment T in Figure 1.
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In particular, we draw a sampling indicator Si as follows. The second step scales the

probability to be bounded away from zero and one.

S′i,lp = −20×X4i + 20×X5i

Si,lp = 0.25(S′i,lp − S′lp)/sd(S′lp)

Si =
1

1 + e−Si,lp

Simulation Procedure. We conduct 5000 simulations for each of six experimental sample

sizes, n = {100, 200, 500, 1000, 2000, 3000}. Within each simulation, we first randomly sample

n units for the experiment based on the sampling mechanism and randomly assign units

to treatment according to the specified treatment assignment mechanism. We also randomly

sample a target population of size m = 10000. We then estimate both an exact and a marginal

separating set using the experimental data. An advantage of our method is that researchers can

specify variables that cannot be measured in the target population. To illustrate this benefit,

we also estimate a marginal separating set with a constraint that variable X1 is unmeasurable

in the target population, thus making the minimal separating set unobservable in the target

population. We compare these sets to an oracle sampling set, oracle heterogeneity set, and

oracle minimum separating set.

For each estimated and oracle set, we compute the PATE using the inverse probability

weighting estimator described in Section 4.3. In the supplementary material, we repeat these

simulations with a calibration estimator discussed in Hartman et al. (2015), and a linear

regression projection estimator.

SM-5.2 Results

We present results in Figure SM-3. Not shown in the graph are the results for the naive

difference-in-means, which has significant bias (−1.0). As expected, we see that the bias goes

to zero for the oracle and estimated separating sets, and that the estimators are consistent for

the PATE. More importantly, we see that estimators based on the selected marginal separating

sets (red), exact separating sets (dark blue), and marginal separating set with user constraints

(pink) have similar standard errors to the oracle sampling set (green) and the oracle minimum

separating set (purple). An estimator based on the oracle heterogeneity set (orange) has

smaller standard errors than other estimators partly because it contains variables which are

direct predictors of outcomes.

Figure SM-4 shows the breakdown of types of estimated separating sets. We group sets

that are conceptually similar, and the frequency with which each set is chosen is presented.

For example, if our algorithm selects the variables in the sampling set (X4 and X5) as well

as an additional variable, we group these as “similar to” the sampling set. As can be seen, in

these simulations as n gets large, over 75% of the time, the minimal separating set (purple) is

selected. Small sample size can lead to the misestimation of the MRF, and therefore selection of

inappropriate sets (gray) which do not remove bias — however, the rate at which inappropriate

11
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Figure SM-3: Simulation Results. Note: The left figure shows bias for the PATE and the right
figure presents standard error estimates. As expected, bias is close to zero for all estimators.
More importantly, estimators based on the estimated separating sets (red) and estimated
separating sets with user constraints (pink) have similar standard errors to the oracle sampling
set (green) and the oracle minimum separating set (purple).
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Estimated Separating Set by Type

Figure SM-4: Types of Estimated Separating Sets. Note: We present the frequency of es-
timated separating sets by conceptual type. While the algorithm picks an inappropriate set
when the sample size is small, as n increases, the most likely set is the minimal separating set.
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Estimated Separating
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Estimated Separating Set by Type −− With User Constraints

Figure SM-5: Type of Estimated Marginal Separating Set with User Constraints. Note: We
present the frequency of estimated separating sets by conceptual type. With user constraints,
the algorithm selects each of the other types of separating sets more frequently.

sets are selected drops off rapidly with sample size. In the supplementary material, we show

that, when incorporating user constraints that make adjustment by the minimum separating

set infeasible, the algorithm selects sets similar to the sampling and heterogeneity sets with

higher frequency.

SM-5.3 Additional Simulation Results

In the previous subsection, we discussed the breakdown of the different types of estimated

separating sets in the simulated data generating process. Here we show the breakdown of

types of estimated separating sets when incorporating user constraints in Figure SM-5. In this

case, X1, the alternative separating set, cannot be measured in the target population, we see

that the algorithm selects the sampling and heterogeneity sets with higher frequency.

Figure SM-6 presents the bias and standard error result by selected estimated separating

set type. We refer to sets that are “similar to” different conceptual sets in order to group sets

that control for a specific type of separating sets, but which may include extra variables. For

example, if the estimated set includes X4, X5, and X8, we say this is similar to a sampling set

(X4 and X5). As theorems tell us, it doesn’t matter what type of separating sets the algorithm

estimates in the experimental data, all of them produce unbiased estimates so long as the set is

an appropriate separating set (see Figure SM-6). When an inappropriate set is chosen, which

is common in the n = 100 case but rare as n increases, we see that inappropriate sets do not

reduce bias. As we expect, when estimated separating sets are similar to a heterogeneity set,

standard errors are the smallest.
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Figure SM-6: Simulation Results for Estimated Separating Set by Type. Note: The left figure
shows bias for the PATE and the right figure presents standard error estimates. As expected,
bias is close to zero for all estimators. Estimated sets are categorized by type: similar to oracle
sampling set (green) and the oracle minimum separating set (purple) and oracle heterogeneity
set (orange).

Finally, we present the simulation results for two alternative estimators in Figure SM-7,

a calibration estimator and a linear regression projection. The calibration estimator matches

population means for the estimated separating set using a maximum entropy (raking) algo-

rithm (Hartman et al., 2015). The linear projection estimator estimates a fully interacted

linear regression model using the estimated separating set, and projects the model on the

target population.

14



●

●

●
● ● ●

●

●
●

● ● ●

●

●

●

●

●
●

●

●

●

●

●
●

LM Projection

Bias

LM Projection

Standard Error

Calibration

Bias

Calibration

Standard Error

0 1000 2000 3000 0 1000 2000 3000

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

−0.20

−0.15

−0.10

−0.05

0.00

−0.20

−0.15

−0.10

−0.05

0.00

●
Estimated
Separating Set
Estimated Separating
Set with User Constraints

Oracle
Sampling Set
Oracle
Heterogeneity Set

Oracle
Minimal Set
Estimated
Exact Set

Figure SM-7: Simulation Results for Alternative Estimators. Note: The left figure shows bias
for the PATE and the right figure presents standard error estimates. As expected, bias is close
to zero for all estimators. More importantly, estimators based on the estimated separating sets
(red) and estimated separating set with user constraints (pink) have similar standard errors to
the oracle sampling set (green) and the oracle minimum separating set (purple). An estimator
based on the heterogeneity set (orange) has significantly smaller standard errors than other
estimators, but this estimator might be unavailable in practice.
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SM-6 R Function to Estimate Separating Sets

# ################################

# Estimating the separating set

# ################################

# X.data: all pre-treatment covariates in the experimental data

# X.type: types of each covariate. "g" for continous variables, and "c" for categorical variables.

# X.level: the number of levels in each covariates. For continous variables, set it to 1.

# Y: outcome variable in the experimental data

# Treat: treatment variable in the experimental data

# XS: names of the sampling set

# XH: names of the heterogeneity set

# XU: names of variables unmeasurable in the target population

# type: when "Y", we estimate the marginal separating set. when "XH", we estimate the exact separating set.

# print_graph: whether we print the estimated Markov Random Fields

library(igraph); library(qgraph); library(lpSolve); library(mgm); library(Hmisc)

Separating <- function(X.data, X.type, X.level,

Y, Treat, XS, XH = NULL, XU=NULL, type = "Y",

print_graph = FALSE) {

## Setup

n.var <- ncol(X.data)

if(type == "Y"){

if(missing(X.type) == TRUE){

type.sim <- rep("g", n.var + 2)

level.sim <- rep(1, n.var + 2)

}else{

type.sim <- c(X.type, rep("g", 2))

level.sim <- c(X.level, rep(1, 2))

}

X.data.g <- cbind(X.data, Y, Treat)

name.label <- c(colnames(X.data), "Y")

}else if(type == "XH"){

if(missing(X.type) == TRUE){

type.sim <- rep("g", n.var + 1)

level.sim <- rep(1, n.var + 1)

}else{

type.sim <- c(X.type, rep("g", 1))

level.sim <- c(X.level, rep(1, 1))

}

X.data.g <- cbind(X.data, Treat)

name.label <- colnames(X.data)

}
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## ###########################################

## Step 1: Estimate the Markov Random Graph

## ###########################################

fit.sim <- mgm(

data = X.data.g,

type = type.sim,

level = level.sim,

threshold = "LW",

k = 2,

verbatim = TRUE,

signInfo = FALSE,

lambdaSel = "EBIC"

)

## Remove T from the Graph

treat_ind <- which(colnames(X.data.g) == "Treat")

Ad <- as.matrix(fit.sim$pairwise$wadj > 0)

Ad <- Ad[-treat_ind,-treat_ind]

Ad.w <- fit.sim$pairwise$wadj

Ad.w <- Ad.w[-treat_ind, -treat_ind]

edge.col <- fit.sim$pairwise$edgecolor

edge.col <- edge.col[-treat_ind,-treat_ind]

graph.u <- graph_from_adjacency_matrix(Ad)

## Show the graph

if(print_graph) qgraph(

Ad.w,

edge.color = edge.col,

layout = ’spring’,

labels = name.label

)

## #################################################################

## Step 2: Estimate the Separating Set based on an estimated MRF

## #################################################################

if (type == "Y") {

base <- rep(0, (n.var + 1))

XS.ind <- which(is.element(colnames(X.data), XS))

path.cons <- matrix(NA, nrow = 0, ncol = (n.var + 1))

## Enumerate all path

for (w in 1:length(XS)) {

ind.path.mat <- do.call("rbind",

lapply(all_simple_paths(graph.u, (n.var + 1), XS.ind[w]),

FUN=function(x) ind.path(x, base)))

path.cons <- rbind(path.cons, ind.path.mat)

}
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}else if (type == "XH") {

base <- rep(0, n.var)

XJ <- intersect(XS, XH)

all.pair <- expand.grid(XH, XS)

path.cons <- matrix(NA, nrow = 0, ncol = n.var)

## Enumerate all path

for (w in 1:nrow(all.pair)) {

ind_1 <- which(colnames(X.data.g) == all.pair[w, 1])

ind_2 <- which(colnames(X.data.g) == all.pair[w, 2])

ind.path.mat <-

do.call("rbind",

lapply(

all_simple_paths(graph.u, ind_1, ind_2),

FUN=function(x) ind.path(x, base)))

path.cons <- rbind(path.cons, ind.path.mat)

}

}

if(dim(path.cons)[1] == 0) {

solution <- NULL

status <- 0

}else{

## Removing Y and XU from the separating set

if (length(XU) == 0) {

if(type == "Y"){

path.cons2 <- rbind(path.cons,

c(rep(0, n.var), 1))

f.dir <- c(rep(">=", nrow(path.cons)), "=")

f.rhs <- c(rep(1, nrow(path.cons)), 0)

}else if(type == "XH"){

path.cons2 <- path.cons

f.dir <- rep(">=", nrow(path.cons))

f.rhs <- rep(1, nrow(path.cons))

}

} else{

XU.ind <- which(is.element(colnames(X.data), XU))

path.cons2.u <- matrix(0, nrow = length(XU.ind), ncol = n.var)

for (i in 1:nrow(path.cons2.u)) {

path.cons2.u[i, XU.ind[i]] <- 1

}

if(type == "Y"){

path.cons2.u2 <- cbind(path.cons2.u, 0)

path.cons2 <- rbind(path.cons,

c(rep(0, n.var), 1),

path.cons2.u2)

f.dir <- c(rep(">=", nrow(path.cons)),
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rep("=", (nrow(path.cons2.u2) + 1)))

f.rhs <- c(rep(1, nrow(path.cons)),

rep(0, (nrow(path.cons2.u2) + 1)))

}else if(type == "XH"){

path.cons2.u2 <- path.cons2.u

path.cons2 <- rbind(path.cons,

path.cons2.u2)

f.dir <- c(rep(">=", nrow(path.cons)),

rep("=", nrow(path.cons2.u2)))

f.rhs <- c(rep(1, nrow(path.cons)),

rep(0, nrow(path.cons2.u2)))

}

}

if(type == "Y"){f.obj <- c(rep(1, n.var), 0)}

else if(type == "XH"){f.obj <- rep(1, n.var)}

f.con <- path.cons2

num.solutions <- max.solutions.calculate <- 1

sp.out <- lp("min", f.obj, f.con, f.dir, f.rhs, all.bin = TRUE, num.bin.solns = max.solutions.calculate)

if(sp.out$status == 0) {

if(max.solutions.calculate > 1) {

solution <- sp.out$solution[1:(length(f.obj)*max.solutions.calculate)]

solution <- split(solution, sort(1:length(solution) %% sp.out$num.bin.solns))

if(num.solutions == 1) {

solution <- sample(solution, num.solutions)

}

if(length(solution) == 1) {

solution <- as.vector(unlist(solution))

}

} else {

solution <- sp.out$solution

}

}

status <- sp.out$status

}

## Final Adjustment

if (status == 0) {

if(is.null(solution)==TRUE) {

## the empty set is enough for generalizability

solution.name <- NULL

}else{

if(type == "Y"){

solution.ind <- which(solution[-length(solution)] == 1)

XJ <- NULL

}else if (type == "XH") {

19



solution.ind <- which(solution == 1)

}

solution.name <- colnames(X.data)[solution.ind]

if(type == "XH" & length(XJ)!=0){ solution.name <- union(solution.name, XJ)}

}

}else if (status==2){

cat("\nNo Feasible Solution.\n")

solution.name <- "No Feasible Solution."

}

if(print_graph==TRUE){cat ("\n"); cat(solution.name)}

return(solution.name)

}

# Auxiliary function

ind.path <- function(x, base) {

base[x] <- 1

return(base)

}
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