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A Identification

A.1 Proof of Lemma 4

Here, we prove the existence of the outcome confounding bridge.

A.1.1 Setup

To make the discussion general, we use Y to denote the outcome and A to denote the treatment

instead of (Y12, Y21) and (Yi2, Ai), which we use in Section 2 and Section 3, respectively. To

provide rigorous discussion on the existence of a solution to a Fredholm integral equation of the

first kind, we rely on Picard’s theorem (Kress, 1989, Theorem 15.18).

Lemma 3 (Picard’s theorem (Kress, 1989, Theorem 15.18)) Given Hilbert spaces S1 and

S2, let K : S1 → S2 be a compact operator with singular system (νp, υp, κp)
+∞
p=1. Define its

adjoint to be K∗ : S2 → S1. Then, for h ∈ S1 and h̃ ∈ S2, there exists a solution to a

Fredholm integral equation of the first kind Kh = h̃ if and only if (1) h̃ ∈ Null(K∗)⊥ and

(2)
∑+∞

p=1
1
ν2p
|〈h̃, κp〉|2 < +∞, where the inner product is defined for a Hilbert space S2,

Null(K∗) = {h̃ : K∗h̃ = 0} is the null space of K∗, and ⊥ represents the orthogonal com-

plement to a subset.

To apply Picard’s theorem, we need to provide some additional notation. We use F and

dF to denote the cumulative distribution function and the Radon-Nikodym derivative of F .

We define L2{F (t)} to be the space of all square integrable functions of t with respect to a

cumulative distribution function F (t), which is a Hilbert space with the inner product

〈h1, h2〉 :=

∫ +∞

−∞
h1(t)h2(t)dF (t) for all h1, h2 ∈ L2{F (t)}.

We define a kernel

K(w, u, a, x) =
dF (w, u | a, x)

dF (w | a, x)dF (u | a, x)
.



We then define the linear operators Ka,x : L2{F (w | a, x)} → L2{F (u | a, x)} by

Ka,xh =

∫ +∞

−∞
K(w, u, a, x)h(w)dF (w | a, x) = E{h(w) | u, a, x}

for h ∈ L2{F (w | a, x)}. The adjoint of this linear operator K∗a,x : L2{F (u | a, x)} → L2{F (w |

a, x)} is given by

K∗a,xh̃ =

∫ +∞

−∞
K(w, u, a, x)h̃(u)dF (u | a, x) = E{h̃(u) | w, a, x}

for h̃ ∈ L2{F (u | a, x)}.

A.1.2 Main Results

We first assume that W is relevant for U .

Assumption 5 (Relevance of W for U) For any square integrable function f and any a and

x, if E{f(U) |W = w,A = a,X = x} = 0 for almost all w, then f(U) = 0 almost surely.

This is formally known as a completeness condition, and can be interpreted similarly to Assump-

tion 1.4. We also introduce regularity conditions related to the singular value decomposition.

Assumption 6 (Regularity Conditions)∫ +∞

−∞
dF (u | w, a, x)dF (w | u, a, x)dwdu < +∞ (A.1)∫ +∞

−∞
E(Y | a, u, x)2dF (u | a, x)du < +∞ (A.2)

+∞∑
p=1

1

ν2
a,x,p

|〈E(Y | a, u, x), κa,x,p〉|2 < +∞ (A.3)

where νa,x,p is the p-th singular value of Ka,x, and κa,x,p ∈ L2{F (u | a, x)} is an orthogonal

sequence.

Lemma 4 Under Assumptions 5 and 6, there exists a function h(W,Y21, X) such that for all

y21 ∈ Y21, equation (5) holds.

A.1.3 Proof

Under Assumptions 5 and 6, we prove the existence of a solution to the following Fredholm

integral equation of the first kind.

E(Y | A = a, U = u,X = x) = E{h(W,a, x) | A = a, U = u,X = x}. (A.4)
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First, we can re-write equation (A.4) as follows using notation introduced above.

Ka,xh = E(Y | A = a, U = u,X = x). (A.5)

Therefore, to evoke Picard’s theorem, we need to prove (i) Ka,x is a compact operator, (ii)

E(Y | A = a, U = u,X = x) ∈ L2{F (u | a, x)}, (iii) E(Y | A = a, U = u,X = x) ∈ Null(K∗a,x)⊥,

and (iv)
∑+∞

p=1
1

ν2a,x,p
|〈E(Y | A = a, U = u,X = x), κa,x,p〉|2 < +∞, where νa,x,p is the p-th

singular value of Ka,x, and κa,x,p ∈ L2{F (u | a, x)} is an orthogonal sequence.

Proof of (i): We note that Ka,x and K∗a,x are compact operators under equation (A.1)

(Carrasco et al., 2007, Example 2.3 on page 5659). Therefore, there exists a singular system

(νa,x,p, υa,x,p, κa,x,p) of Ka,x according to Kress (1989, Theorem 15.16) where νa,x,p is the p-th

singular value of Ka,x, and υa,x,p ∈ L2{F (w | a, x)} and κa,x,p ∈ L2{F (u | a, x)} are orthogonal

sequences.

Proof of (ii): Under equation (A.2), we have E(Y | a, u, x) ∈ L2{F (u | a, x)}.

Proof of (iii): We show that Null(K∗a,x)⊥ = L2{F (u | a, x)}. For any h̃ ∈ Null(K∗a,x),

we have K∗a,xh̃ = E{h̃(u) | w, a, x} = 0 almost surely by the definition of the null space.

Under Assumption 5 (Relevance of W for U), we have h̃(u) = 0 almost surely. Therefore,

Null(K∗a,x)⊥ = L2{F (u | a, x)}. Based on (ii), we have E(Y | a, u, x) ∈ L2{F (u | a, x)} under

equation (A.2), and therefore, E(Y | a, u, x) ∈ Null(K∗a,x)⊥.

Proof of (iv): Finally, this key condition for Picard’s theorem is directly implied by equa-

tion (A.3), which completes the proof. 2

A.2 Details on Completeness Conditions

In this section, to simplify the discussion, we only focus on two random variables W and Z. We

say that Z is complete with respect to W if ∀f(W ) ∈ L2{F (W )},

E{f(W ) | Z} = 0 almost surely =⇒ f(W ) = 0 almost surely. (A.6)

This completeness condition, also known as L2−completeness, requires that the conditional

expectation projection operator K : L2{F (W )} → L2{F (Z)} be injective (i.e., Null(K) = {0}).

Intuitively, this means that no information has been lost through projection of W on Z. A

necessary and sufficient condition of completeness is given by the following lemma.

Lemma 5 (Severini and Tripathi (2006); Andrews (2017)) Z is complete with respect
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to W if and only if every non-constant random variable λ(W ) ∈ L2{F (W )} is correlated with

some random variable λ̃(Z) ∈ L2{F (Z)}.

This formally captures the notion that completeness ensures that there is no loss of information

through projection of W on Z.

As explained in Section 2.3, the completeness condition has been long used in statistics and

econometrics. Originally in statistics, Lehmann and Scheffé (2012a,b) introduced the concept

of completeness and used it to define estimators with minimal risk within unbiased estimators.

They defined completeness as Eθ(f(V )) = 0 for any θ ∈ Θ implying f(V ) = 0 a.s. with

respect to some parameter space Θ parameterizing the distribution space. Shao (2003) defined

completeness with respect to a family of distributions, i.e., EP (f(V )) = 0 for any P ∈ P

implying f(V ) = 0 a.s. with respect to some family of P. In our definition of the completeness

(Assumption 1.4 and Assumption 2.4), we set P to be the conditional distribution. If we

define a family of distributions to be P = {F (W | Z) : Z ∈ Z} of random variable W , the

connection between our definition of completeness and the traditional completeness condition

given in Lehmann and Scheffé (2012a,b) becomes clear. In particular, we say that a family of

distributions P = {F (W | Z) : Z ∈ Z} of random variable W is complete with respect to Z

if ∀f(W ) ∈ L2{F (W )}, EF (W |Z){f(W )} = E{f(W ) | Z} = 0 for almost all Z implies that

f(W ) = 0 almost surely. This is equivalent to our definition given in equation (A.6).

Recently, completeness conditions have been extensively applied in the econometrics litera-

ture to obtain identification for a variety of nonparametric and semi-parametric models, most

famously, in nonparametric models with instrumental variables (e.g., Ai and Chen, 2003; Newey

and Powell, 2003; Chernozhukov et al., 2007; Darolles et al., 2011). Other examples include

measurement error models (e.g., Hu and Schennach, 2008) and panel or dynamic models (e.g.,

Hu and Shum, 2012; Freyberger, 2018).

Finally, as in our paper, completeness conditions have been essential in the literature of

negative controls and proximal causal learning (Tchetgen Tchetgen et al., 2020a). Miao et al.

(2018b) make two completeness conditions (a) the completeness of W with respect to Z, (b)

the completeness of Z with respect to U (see Conditions 2 and 3 in their paper). Deaner

(2018); Shi et al. (2020); Kallus et al. (2021) make alternative two completeness conditions (a)

the completeness of W with respect to U , (b) the completeness of Z with respect to U (see
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Assumption 3 in Deaner (2018), Assumption 4 in Shi et al. (2020), and Example 6 in Kallus

et al. (2021)). Miao et al. (2018a) make one completeness condition (the completeness of Z with

respect to W ; see Assumption 5 in their paper) along with the assumption of the existence of an

outcome confounding bridge function, which can be justified by another completeness condition

(the completeness of W with respect to U).

In Sections 2 and 3, we followed Miao et al. (2018a) and made Assumptions 1.3 and 1.4

and Assumptions 2.3 and 2.4, respectively. We prove nonparametric identification of the ACPE

under those assumptions in Appendix A.5 below. We briefly note however that analogous devel-

opments can be established under one of the aforementioned alternative completeness conditions

in the literature. This is further explored below in Appendix A.6.

A.3 Proof of Lemma 1

First, equation (10) implies that

Ci ⊥⊥ ({Cj : j 6= i}, Ai) | Ui, Xi, (A.7)

=⇒ Wi ⊥⊥ Ai | Ui, Xi, (A.8)

as we define Wi = Ci and Ai = φ({Yj1 : j ∈ N (i; 1)}) ∈ R. Then, equation (A.7) also implies

that

Ci ⊥⊥ {Cj : j 6= i} | Ai, Ui, Xi,

=⇒ Wi ⊥⊥ Zi | Ai, Ui, Xi, (A.9)

as we define Wi = Ci and Zi = {Cj : j 6= i}. Finally, equation (11) implies that

Yi2 ⊥⊥ {Cj : j 6= i} | Ai, Ui, Xi,

=⇒ Yi2 ⊥⊥ Zi | Ai, Ui, Xi, (A.10)

where Zi = {Cj : j 6= i}. Therefore, equations (A.8)–(A.10) are equivalent to Assumption 2.2,

which completes the proof. 2

A.4 Proof of Lemma 2

First, equation (12) implies that

Yi1 ⊥⊥ (Ai, {Yj1 : j ∈ N (i; s), s ≥ 2}) | Ui, Xi, (A.11)

5



=⇒ Wi ⊥⊥ Ai | Ui, Xi, (A.12)

as we define Wi = Yi1. Then, equation (A.11) also implies that

Yi1 ⊥⊥ {Yj1 : j ∈ N (i; s), s ≥ 2} | Ai, Ui, Xi,

=⇒ Wi ⊥⊥ Zi | Ai, Ui, Xi, (A.13)

as we define Wi = Yi1 and Zi = {Yj1 : j ∈ N (i; s), s ≥ s̃} where s̃ ≥ 2.

Finally, equation (13) states that

Yi2 ⊥⊥ {Yj1 : j ∈ N (i; s), s ≥ s̃} | Ai, Ui, Xi,

=⇒ Yi2 ⊥⊥ Zi | Ai, Ui, Xi, (A.14)

where Zi = {Yj1 : j ∈ N (i; s), s ≥ s̃}. Therefore, equations (A.12)–(A.14) are equivalent to

Assumption 2.2, which completes the proof. 2

A.5 Proof of Theorem 2

Here, we prove identification of E{Yi2(a)} for a ∈ A and a given unit i ∈ Nn, which is sufficient

for proving identification of the ACPE. The proof of Theorem 1 is a special case of the proof

we provide below.

This proof adopts the proof by Miao et al. (2018a) to our network setting. First, we prove

that the mean potential outcomes can be identified as the mean of the outcome confounding

bridge function.

E{Yi2(a)} = E{h(Wi, a,Xi)}.

Proof: Under Assumption 2.1,∫
E(Yi2 | Ai = a, Ui = u,Xi = x)dF (Ui = u,Xi = x) =

∫
E{Yi2(a) | Ui = u,Xi = x}dF (Ui = u,Xi = x)

= E{Yi2(a)}.

Under Assumption 2.2,∫
E{h(Wi, a,Xi) | Ai = a, Ui = u,Xi = x)dF (Ui = u,Xi = x)

=

∫
E{h(Wi, a,Xi) | Ui = u,Xi = x)dF (Ui = u,Xi = x)

= E{h(Wi, a,Xi)}.
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Under Assumption 2.3, E(Yi2 | Ai = a, Ui = u,Xi = x) = E{h(Wi, a,Xi) | Ai = a, Ui = u,Xi =

x}, and therefore,

E{Yi2(a)} = E{h(Wi, a,Xi)},

which completes the proof. 2

Next, we prove that the confounding bridge function is identified as follows.

E(Yi2 | Zi, Ai, Xi) = E{h(Wi, Ai, Xi) | Zi, Ai, Xi}. (A.15)

Proof: Under Assumption 2.2,∫
E(Yi2 | Ai, Ui = u,Xi)dF (Ui = u | Zi, Ai, Xi)

=

∫
E(Yi2 | Zi, Ai, Ui = u,Xi)dF (Ui = u | Zi, Ai, Xi)

= E(Yi2 | Zi, Ai, Xi).

Under Assumption 2.2,∫
E{h(Wi, Ai, Xi) | Ai, Ui = u,Xi}dF (Ui = u | Zi, Ai, Xi)

=

∫
E{h(Wi, Ai, Xi) | Zi, Ai, Ui = u,Xi}dF (Ui = u | Zi, Ai, Xi)

= E{h(Wi, Ai, Xi) | Zi, Ai, Xi}.

Under Assumption 2.3, E(Yi2 | Ai, Ui, Xi) = E{h(Wi, Ai, Xi) | Ai, Ui, Xi}, and therefore,

E(Yi2 | Zi, Ai, Xi) = E{h(Wi, Ai, Xi) | Zi, Ai, Xi}.

We finally demonstrate that the solution to equation (A.15) is unique and identifies the out-

come confounding bridge function h under Assumption 2.4. Suppose there are two functions

h(Wi, Ai, Xi) and h′(Wi, Ai, Xi) that satisfy equation (A.15). Then,

E{h(Wi, Ai, Xi)− h′(Wi, Ai, Xi) | Zi = z,Ai = a,Xi = x} = 0

for all a, x, and almost all z. Then, under Assumption 2.4, h(Wi, Ai, Xi) = h′(Wi, Ai, Xi)

almost surely. Thus, the solution to equation (A.15) identifies the outcome confounding bridge

function. 2
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A.6 Identification of the ACPE under Alternative Assumptions

Here, we show that the same identification formula for the ACPE can be proven based on an

alternative set of assumptions. The main difference is that we first define an outcome bridge

function as a solution to the following Fredholm integral equation of the first kind.

E(Yi2 | Zi, Ai, Xi) = E{h†(Wi, Ai, Xi) | Zi, Ai, Xi}. (A.16)

Then, we show, under some assumptions, this outcome bridge function satisfies

E(Yi2 | Ai = a, Ui, Xi) = E{h†(Wi, a,Xi) | Ai = a, Ui, Xi}. (A.17)

This approach is in contrast with the approach we used in the main paper and proved in

Appendix A.5 where we defined an outcome bridge function as a solution to equation (A.17)

and then showed that it satisfies equation (A.16). The approach used in this section is similar

to the one used in Deaner (2018); Miao et al. (2018b); Shi et al. (2020).

We see below that although this difference leads to a different set of assumptions, they both

result in the same identification formula for the ACPE.

In particular, while we maintain Assumption 2.1 and Assumption 2.2, we replace Assump-

tion 2.3 and Assumption 2.4 with two different assumptions below (Assumptions 7 and 8).

Assumption 7 (Outcome Confounding Bridge h†) There exists some function h†(Wi, Ai, Xi)

such that for all a ∈ A, and all i ∈ Nn,

E(Yi2 | Ai = a, Zi = z,Xi) = E{h†(Wi, a,Xi) | Ai = a, Zi = z,Xi}. (A.18)

Assumption 8 (Relevance of Z for U) For any square integrable function f and for any a

and x, if E{f(Ui) | Zi = z,Ai = a,Xi = x} = 0 for almost all z, then f(Ui) = 0 almost surely.

Theorem 5 Under Assumptions 2.1, 2.2, 7 and 8, an outcome confounding bridge function h†

(defined in equation (A.18)) satisfies the following equality for all a ∈ A, and all i ∈ Nn,

E(Yi2 | Ui, Ai = a,Xi) = E{h†(Wi, a,Xi) | Ui, Ai = a,Xi},

and, the ACPE is identified by

τ(a, a′) =
1

n

n∑
i=1

E{h†(Wi, a,Xi)− h†(Wi, a
′, Xi)}.
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Finally, like Lemma 4, we can also prove Assumption 7 under a completeness condition and

associated regularity conditions (Assumption 9 defined below in Appendix A.6.2).

Lemma 6 Under Assumptions 5 and 9, there exists a function h†(Wi, a,Xi) such that for all

a ∈ A and all i ∈ Nn, equation (A.18) holds.

A.6.1 Proof of Theorem 5

First, we show that an outcome confounding bridge function h† defined in equation (A.18)

satisfies the following equality.

E{h†(Wi, a,Xi) | Ai = a, Ui = u,Xi = x) = E{Yi2(a) | Ai = a, Ui = u,Xi = x} (A.19)

We have

E{h†(Wi, a,Xi) | Ai = a, Zi = z,Xi = x)

=

∫
E{h†(Wi, a,Xi) | A = a, Ui = u, Zi = z,Xi = x)dF (Ui = u | A = a, Zi = z,Xi = x)

=

∫
E{h†(Wi, a,Xi) | A = a, Ui = u,Xi = x)dF (Ui = u | A = a, Zi = z,Xi = x) (A.20)

where the first equality follows from iterated expectations, and the second from Assumption 2.2.

We also have

E(Yi2 | Ai = a, Zi = z,Xi = x)

=

∫
E(Yi2 | Ai = a, Ui = u, Zi = z,Xi = x)dF (Ui = u | Ai = a, Zi = z,Xi = x)

=

∫
E(Yi2 | Ai = a, Ui = u,Xi = x)dF (Ui = u | Ai = a, Zi = z,Xi = x) (A.21)

where the first equality follows from iterated expectations, and the second from Assumption 2.2.

Under Assumption 7, we have

E(Yi2 | Ai = a, Zi = z,Xi) = E{h†(Wi, a,Xi) | Ai = a, Zi = z,Xi}

⇐⇒
∫
{E(Yi2 | Ai = a, Ui = u,Xi = x)− E{h†(Wi, a,Xi) | Ai = a, Ui = u,Xi = x)}

×dF (Ui = u | Ai = a, Zi = z,Xi = x) = 0

=⇒ E(Yi2(a) | Ai = a, Ui = u,Xi = x) = E{h†(Wi, a,Xi) | Ai = a, Ui = u,Xi = x}

where the first equivalence comes from equations (A.20) and (A.21), and the final line follows

from Assumption 8 and the consistency of the potential outcomes.
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Next, by using equation (A.19), we prove that

E{Yi2(a)} = E{h†(Wi, a,Xi)}.

Under Assumption 2.1, we have∫
E(Yi2(a) | Ai = a, Ui = u,Xi = x)dF (Ui = u,Xi = x)

=

∫
E{Yi2(a) | Ui = u,Xi = x}dF (Ui = u,Xi = x)

= E{Yi2(a)}.

Under Assumption 2.2, we have∫
E{h†(Wi, a,Xi) | Ai = a, Ui = u,Xi = x)dF (Ui = u,Xi = x)

=

∫
E{h†(Wi, a,Xi) | Ui = u,Xi = x)dF (Ui = u,Xi = x)

= E{h†(Wi, a,Xi)}.

Equation (A.19) states that E(Yi2(a) | Ai = a, Ui = u,Xi = x) = E{h†(Wi, a,Xi) | Ai = a, Ui =

u,Xi = x}, and therefore,

E{Yi2(a)} = E{h†(Wi, a,Xi)},

which completes the proof. 2

A.6.2 Proof of Lemma 6

In this proof, as done above, we use Y to denote the outcome and A to denote the treatment

instead of (Yi2, Ai), which we use in Section 3. To provide rigorous discussion on the existence

of a solution to a Fredholm integral equation of the first kind, we keep using notation introduced

in Appendix A.1.

Using general notation, we re-state Lemma 6 as follows. Under Assumptions 5 and 9, there

exists a function h(W,a,X) such that for all a ∈ A, a solution to the following Fredholm integral

equation of the first kind exists.

E(Y | Z = z,A = a,X = x) = E{h†(W,a, x) | Z = z,A = a,X = x}. (A.22)

We also introduce regularity conditions related to the singular value decomposition.
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Assumption 9 (Regularity Conditions II)∫ +∞

−∞
dF (z | w, a, x)dF (w | z, a, x)dwdz < +∞ (A.23)∫ +∞

−∞
E(Y | a, z, x)2dF (z | a, x)dz < +∞ (A.24)

+∞∑
p=1

1

ν̃2
a,x,p

|〈E(Y | a, z, x), κ̃a,x,p〉|2 < +∞ (A.25)

where ν̃a,x,p is the p-th singular value of K̃a,x, and κ̃a,x,p ∈ L2{F (z | a, x)} is an orthogonal

sequence.

Proof: We start by defining a kernel

K̃(w, z, a, x) =
dF (w, z | a, x)

dF (w | a, x)dF (z | a, x)
.

We then define the linear operators K̃a,x : L2{F (w | a, x)} → L2{F (z | a, x)} by

K̃a,xh =

∫ +∞

−∞
K̃(w, z, a, x)h(w)dF (w | a, x) = E{h(w) | z, a, x}

for h ∈ L2{F (w | a, x)}.

The adjoint of this linear operator K̃∗a,x : L2{F (z | a, x)} → L2{F (w | a, x)} is given by

K̃∗a,xh̃ =

∫ +∞

−∞
K̃(w, z, a, x)h̃(z)dF (z | a, x) = E{h̃(z) | w, a, x}

for h̃ ∈ L2{F (z | a, x)}.

Using the introduced notations, we can re-write equation (A.22) as follows using the nota-

tions introduced above.

K̃a,xh = E(Y | A = a, Z = z,X = x). (A.26)

Therefore, to use Picard’s theorem (Lemma 3), we need to prove (i) K̃a,x is a compact operator,

(ii) E(Y | A = a, Z = z,X = x) ∈ L2{F (z | a, x)}, (iii) E(Y | A = a, Z = z,X = x) ∈

Null(K̃∗a,x)⊥, and (iv)
∑+∞

p=1
1

ν̃2a,x,p
|〈E(Y | A = a, Z = z,X = x), κ̃a,x,p〉|2 < +∞, where ν̃a,x,p is

the p-th singular value of K̃a,x, and κ̃a,x,p ∈ L2{F (z | a, x)} is an orthogonal sequence.

Proof of (i): We note that K̃a,x and K̃∗a,x are compact operators under equation (A.23)

(Carrasco et al., 2007, Example 2.3 on page 5659). Therefore, there exists a singular system

(ν̃a,x,p, υ̃a,x,p, κ̃a,x,p) of K̃a,x according to Kress (1989, Theorem 15.16) where ν̃a,x,p is the p-th
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singular value of K̃a,x, and υ̃a,x,p ∈ L2{F (w | a, x)} and κ̃a,x,p ∈ L2{F (z | a, x)} are orthogonal

sequences.

Proof of (ii): Under equation (A.24), we have E(Y | a, z, x) ∈ L2{F (z | a, x)}.

Proof of (iii): To show that E(Y | A = a, Z = z,X = x) ∈ Null(K̃∗a,x)⊥, we first define

h̃ ∈ Null(K̃∗a,x). Then, we show below that, for any h̃ ∈ Null(K̃∗a,x),

〈E(Y | A = a, Z = z,X = x), h̃(z)〉 = 0.

We begin by showing E{h̃(z) | U, a, x} = 0. First, we have

E{h̃(z) | w, a, x} = E{E{h̃(z) | U,w, a, x} | w, a, x}

= E{E{h̃(z) | U, a, x} | w, a, x} (A.27)

where the first equality follows from iterated expectations, and the second from Assumption 2.2.

By definition of the null space, we have K̃∗a,xh̃ = E{h̃(z) | w, a, x} = 0 almost surely. Therefore,

E{h̃(z) | w, a, x} = 0 ⇐⇒ E{E{h̃(z) | U, a, x} | w, a, x} = 0

=⇒ E{h̃(z) | U, a, x} = 0 almost surely. (A.28)

where the first equivalence follows from equation (A.27), and the second line follows from the

relevance of W for U (Assumption 5). Finally, we now show 〈E(Y | A = a, Z = z,X =

x), h̃(z)〉 = 0.

〈E(Y | A = a, Z = z,X = x), h̃(z)〉

:= E{E(Y | A = a, Z = z,X = x)h̃(z) | A = a,X = x}

= E{E{E(Y | U,A = a, Z = z,X = x) | A = a, Z = z,X = x}h̃(z) | A = a,X = x}

= E{E{E(Y | U,A = a,X = x) | A = a, Z = z,X = x}h̃(z) | A = a,X = x}

= E{E{E{E(Y | U,A = a,X = x) | A = a, Z = z,X = x}h̃(z) | U,A = a,X = x} | A = a,X = x}

= E{E(Y | U,A = a,X = x)E{h̃(z) | U,A = a,X = x} | A = a,X = x}

= 0,

where the first line follows from the definition of the inner product in a Hilbert space, the

second from iterated expectations applied to E(Y | A = a, Z = z,X = x), the third from

Assumption 2.2, the fourth from iterated expectations, the fifth from conditioning on (U,A =
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Figure A1: Example of DAGs with Unobserved Homophily. Note: For concreteness, we show
Unit 2 as the ego. The thick arrows from Y11 to Y22 and from Y31 to Y22 indicate the causal peer
effects of interest. We use shaded (dotted) nodes to denote observed (unobserved) variables.
For simplicity, we suppressed observed covariates X. Here, the square box around G represents
that we observe variables conditional on network G.

a,X = x), and finally, the sixth follows from equation (A.28). Therefore, this shows that

E(Y | A = a, Z = z,X = x) ∈ Null(K̃∗a,x)⊥.

Proof of (iv): Finally, this key condition for Picard’s theorem is directly implied by equa-

tion (A.25), which completes the proof. 2

A.7 Using Focal Behaviors as Negative Controls in Network Settings

In certain settings, we may also use focal behaviors Yit of peers and those measured at baseline

as plausible candidates for negative controls. In particular, ego’s focal behavior at baseline

may serve as valid NCO and focal behaviors of peers-of-peers {Yjt : j ∈ N (i; 2), t ∈ {1, 2}} may

constitute valid NCEs. Figure A1 represents a causal graph illustrating an instance of the causal

model where Y21 qualifies as NCO and variables {Y41, Y42} qualify as NCE. More generally, when

focal behaviors of peers-of-peers constitute valid negative control exposures, focal behaviors of

units at least of network distance 2 from node i may be credible negative control exposures. A

hybrid approach might entail combining the auxiliary variables and focal behaviors as negative

controls. In Figure 3 of the main paper, we define focal behavior measured at baseline Y21 as

NCO (instead of C2) and auxiliary variables of peers {C1, C3, C4} as NCEs.
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This selection of negative controls is particularly plausible when focal behaviors do not have

direct causal relationships with peers’ focal behaviors measured concurrently. This absence of

causal simultaneity has previously been assumed in the literature of causal peer effects (Shalizi

and Thomas, 2011; Ogburn and VanderWeele, 2014; Egami, 2018; Liu and Tchetgen Tchetgen,

2020; McFowland III and Shalizi, 2021).

In practice, this assumption is most credible when researchers a priori know that the focal

behaviors of units are indeed measured concurrently. For example, in Add Health data, students’

GPA are likely to be measured at the same time for students within a school, and thus, a

student’s GPA cannot be affected by peers’ GPA in the same semester. Importantly, a student’s

GPA can be affected by peers’ GPA in the last semester, and a student’s study habit might be

affected by peer’s study habits within the same semester. These, however, do not invalidate the

use of GPA of peers-of-peers as NCEs as long as students’ GPA within the same semester do

not have direct causal relationships with each other. In some applications, analysts can directly

measure focal behaviors of interest. In such cases, by virtue of survey/study design, researchers

can ensure that the focal behaviors measured at each wave do not affect peers’ focal behaviors

within the same wave by conducting surveys concurrently. This assumption is less credible when

measurements of focal behaviors are aggregated over long periods of time, such as the number

of political tweets over a year, which is likely to be affected by peers’ tweets within the same

year. This is often called the temporal aggregation problem, which invalidates not only peer

effect analysis but also a large class of panel data analyses (Granger, 1988).

This particular selection strategy of negative controls has two advantages when valid. First,

when the NCO entails focal behaviors measured at baseline, the confounding bridge assump-

tion (Assumption 2.3) is often more likely to hold because the NCO and the main outcome

are measured on the same scale (Sofer et al., 2016). Second, if researchers can leverage focal

behaviors of peers and those measured at baseline as negative controls, researchers do not need

to collect additional auxiliary variables, which lowers data collection requirements and improves

applicability of the double negative control approach. However, selection of valid negative con-

trol variables must always be based on reliable domain knowledge because Assumption 2.1 –

Assumption 2.4 must be met.
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A.8 Proof: Identification under Linear Confounding Bridge

We offer an example of a linear confounding bridge with binary treatment and NCE in Sec-

tion 2.3. Here, we provide a proof of the exact expression. For notational simplicity, we remove

conditioning on S = 1 in this section. Because this part of discussions is general about the

double negative control approach, we use A to denote the binary treatment and Y to denote

the outcome variable.

We assume a linear confounding bridge, h(W,A; γ) = γ0+γ1W+γ2A. In this case, the ACPE

is equal to γ2. From Theorem 1, we have the following equality under Assumptions 1.1-1.4.

E(Y | Z,A) = E{h(W,A) | Z,A}.

Conditioning on unmeasured confounder U shows up explicitly in the proof of Theorem 1. Please

see Appendix A.5 where we prove Theorem 1 as a special case of Theorem 2.

Using a linear confounding bridge, the right term is

E{h(W,A) | Z,A} = γ0 + γ1 × E(W | Z,A) + γ2A.

Therefore, from Theorem 1, we have

E(Y | Z,A) = γ0 + γ1 × E(W | Z,A) + γ2A (A.29)

Using equation (A.29), we have

E{E(Y | Z = 1, A)− E(Y | Z = 0, A)} = γ1 × E{E(W | Z = 1, A)− E(W | Z = 0, A)}

=⇒ γ1 =
E{E(Y | Z = 1, A)− E(Y | Z = 0, A)}
E{E(W | Z = 1, A)− E(W | Z = 0, A)}

Again from equation (A.29), we have

E{E(Y | Z,A = 1)− E(Y | Z,A = 0)} = γ2 + γ1 × E{E(W | Z,A = 1)− E(W | Z,A = 0)}

=⇒ γ2 = E{E(Y | Z,A = 1)− E(Y | Z,A = 0)} − γ1 × E{E(W | Z,A = 1)− E(W | Z,A = 0)}

=⇒ γ2 = E{E(Y | Z,A = 1)− E(Y | Z,A = 0)}

− E{E(W | Z,A = 1)− E(W | Z,A = 0)} ×
E{E(Y | Z = 1, A)− E(Y | Z = 0, A)}
E{E(W | Z = 1, A)− E(W | Z = 0, A)}

,

which completes the proof. 2
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B DNC Estimator for Dyadic Data

We now propose a strategy for estimation and inference of the ACPE. Because we observe n in-

dependent and identically distributed samples of dyads, we observe independent and identically

distributed samples on (Y12, Y21,W,Z,X) given S = 1 where Y12, Y21,W,Z,X are the outcome

of interest, treatment, NCO, NCE, and observed pre-treatment covariates, respectively.

Suppose that an analyst has specified a parametric or semiparametric model for the con-

founding bridge h(W,Y21, X; γ) with parameter γ. Then, based on Theorem 1, we can estimate

γ by solving the following empirical moment equations.

1

n

n∑
i=1

{Yi12 − h(Wi, Yi21, Xi; γ)} × η(Zi, Yi21, Xi) = 0,

where η is a user-specified vector function with dimension equal to that of γ. For example, if a

linear confounding bridge function is used, i.e., h(W,Y21, X; γ) = (1,W, Y21, X)>γ, we can use

η(Z, Y21, X) = (1, Z, Y21, X)>.

Once the bridge function h is estimated, we can estimate the ACPE by

1

n

n∑
i=1

{h(Wi, y21, Xi; γ̂)− h(Wi, y
′
21, Xi; γ̂)}.

To appropriately account for uncertainty of the estimated bridge function and for the possibility

that dimension of η might be larger than that of γ, we combine the two moments into generalized

method of moments (GMM) with parameter θ = (τ, γ) (Hansen, 1982; Miao et al., 2018a). We

define a moment for dyad i to be

m(Yi12, Yi21,Wi, Zi, Xi; θ) =

 τ − {h(Wi, y21, Xi; γ)− h(Wi, y
′
21, Xi; γ)}

{Yi12 − h(Wi, Yi21, Xi; γ)} × η(Zi, Yi21, Xi)

 .

Then, the GMM estimator is

θ̂ = argmin
θ

m(θ)>Ω m(θ) (A.30)

wherem(θ) = 1
n

∑n
i=1m(Yi12, Yi21,Wi, Zi, Xi; θ) and Ω is a user-specified positive-definite weight

matrix. Asymptotic properties described below hold for any positive-definite weight matrix Ω

and for alternative GMM estimators, such as the two-step GMM and continuously updating

GMM.

The proposed double negative control (DNC) estimator τ̂(y21, y
′
21) for τ(y21, y

′
21) is the first

element of θ̂ defined in equation (A.30). Because we consider i.i.d. samples of dyads in this
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section, the moment m(Yi12, Yi21,Wi, Zi, Xi; θ) is also i.i.d., and thus, under the standard regu-

larity conditions for GMM (Hansen, 1982; Newey and McFadden, 1994), the DNC estimator is

consistent:

τ̂(y21, y
′
21)

p−→ τ(y21, y
′
21),

and asymptotically normal:

τ̂(y21, y
′
21)− τ(y21, y

′
21)√

σ2/n

d−→ Normal(0, 1),

where
p−→ denotes convergence in probability, and

d−→ denotes convergence in distribution. More-

over, the asymptotic variance σ2 can be consistently estimated by σ̂2 = (Γ̂Λ̂Γ̂>)11, which is the

(1, 1) th element of matrix Γ̂Λ̂Γ̂>, and

Λ̂ =
1

n

n∑
i=1

m(Yi12, Yi21,Wi, Zi, Xi; θ̂) m(Yi12, Yi21,Wi, Zi, Xi; θ̂)
>,

Γ̂ = (M̂>ΩM̂)−1M̂>Ω, and M̂ =
1

n

n∑
i=1

∂

∂θ
m(Yi12, Yi21,Wi, Zi, Xi; θ̂).

Therefore, an asymptotically valid (1−α) confidence interval for τ(y21, y
′
21) is given by [τ̂(y21, y

′
21)−

Φ(1−α/2)× σ̂/
√
n, τ̂(y21, y

′
21) + Φ(1−α/2)× σ̂/

√
n] where Φ(·) denotes the quantile function

for the standard normal distribution.

To minimize the asymptotic variance within the GMM class, we can use the two-step GMM

to estimate the optimal Ω̂. In the first step, we choose an identity matrix as Ω or some other

positive-definite matrix, and compute preliminary GMM estimate θ̂(1). This estimator is consis-

tent, but not efficient. In the second step, we compute Λ̂ based on θ̂(1), which is denoted by Λ̂(1).

Then, we can get the final estimate by solving equation (A.30) with Ω = Λ̂−1
(1). The resulting

estimator θ̂ is consistent and asymptotically normal, and is asymptotically efficient within the

GMM class (Hansen, 1982). The asymptotic variance also simplifies to (M̂>Λ̂−1M̂)−1. To fur-

ther improve finite sample performance, researchers can consider alternative GMM estimators,

such as continuously updating GMM (Hansen et al., 1996).

C Sensitivity Analysis with A Linear Confounding Bridge

Building on sensitivity analysis proposed in Cobzaru et al. (2022), we propose a sensitivity

analysis approach for the causal peer effect analysis with double negative controls. In particular,
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the proposed sensitivity analysis allows researchers to investigate the violation of the negative

control relevance assumption. We extend the original sensitivity analysis in two ways: (1) we

take into account network dependent errors, and (2) we allow for a continuous treatment, which

is common in the causal peer analysis.

In this section, we relax the independent and identically distributed error assumption to allow

for network-dependent (non-independent) errors, but we still keep the assumption of identical

expectation of variables across units used in Cobzaru et al. (2022).

C.1 Setup

First, without loss of generality, we assume that unobserved and observed confounders have

mean zero, and unobserved confounders have variances equal to one. We use ρ to denote

covariance of Ui and Xi. For all i, we have

E(Ui) = 0du , Var(Ui) = Idu

E(Xi) = 0dx , Var(Xi) = ΣX where Σx is a (dx × dx) matrix.

Cov(Ui, Xi) = ρ where ρ is a (du × dx) matrix with each element between −1 and 1.

In this section, we use d· to denote the dimension of random variable, e.g., du denotes the

number of unobserved confounders U .

We consider cases where the number of NCE and that of NCO is the same, while it is smaller

than the number of unobserved confounders U , i.e., du > dz = dw. This represents a scenario

where the negative control relevance assumption is violated.

To simplify notations, we use Y to denote the outcome variable. Following Cobzaru et al.

(2022), we consider the following linear data generating process for NCE Zi, NCO Wi, and the

potential outcome Yi(a). For all i, we have

Zi = µ0z + µazAi + µ>uzUi + µ>xzXi + εiz

Wi = µ0w + µ>uwUi + µ>xwXi + εiw

Y (a)i = µ0y + µaya+ µ>uyUi + µ>xyXi + εiy

where (µ0z, µaz, εiz) are dz dimensional vectors, µuz is a (du× dz) matrix, and µxz is a (dx× dz)

matrix. Similarly, (µ0w, εiw) are dw dimensional vectors, µuw is a (du × dw) matrix, and µxw

is a (dx × dw) matrix. Finally, (µ0y, µay, εiy) are scalar, µuy is a du dimensional vector, and
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µxy is a dx dimensional vector. Here, following Cobzaru et al. (2022), we have εiz⊥⊥(Ai, Ui, Xi),

εiw⊥⊥(Ui, Xi), and εiy⊥⊥(Ai, Ui, Xi). Importantly, in contrast to Cobzaru et al. (2022), we allow

for network-dependent errors, e.g., εiz 6⊥⊥ εjz, εiw 6⊥⊥ εjw, and εiy 6⊥⊥ εjy where i and j are two

different units.

C.2 Sensitivity Analysis

Suppose we use a linear confounding bridge, i.e., h(Wi, Ai, Xi; γ) = γ0 + γaAi + γ>x Xi + γ>wWi,

and we identify parameters with the following moment conditions.

E {{Yi − h(Wi, Ai, Xi; γ)} × η(Ai, Zi, Xi)} = 0

where η(Ai, Zi, Xi) = (1, Ai, Zi, Xi). Under this setup, the true ACPE is µay and the DNC

estimator is γa. When the negative control relevance assumption is violated, the ACPE is not

identified. In particular, we get

γa = µay + b>(Idu − µuw(B>µuw)−1B>)µuy︸ ︷︷ ︸
bias

, (A.31)

where b is a du dimensional vector

b =
E(AiUi)− ρΣ−1

x E(AiXi)

E(A2
i )− E(Ai)2 − E(AiXi)>Σ−1

x E(AiXi)
,

and B is a (du × dz) matrix

B =

Idu − ρΣ−1
x ρ> −

(
E(AiUi)− ρΣ−1

x E(AiXi)
) (

E(AiUi)
> − E(AiXi)

>Σ−1
x ρ>

)
E(A2

i )− E(Ai)2 − E(AiXi)>Σ−1
x E(AiXi)

µuz.

We provide the proof in the next subsection (Appendix C.3).

It is worth emphasizing that this bias formula contains two special cases of no bias as well.

First, this expression contains a special case of the conditional ignorability. When unobserved

confounders U has no effect on the primary outcome, µuy = 0 and thus, γa = µay and there exists

no bias. Second, this derivation also contains a special case when the negative control relevance

assumption holds. When the negative control relevance assumption holds, e.g., du = dz, B
> is

invertible, and in this case, µuwγw = µuy, and therefore, µuw(B>µuw)−1B> = Idu , and γa = µay,

which means there exists no bias.
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To use equation (A.31) for sensivity analysis, there are five unknown parameters (µuw, µuz,

µuy, E(AiUi), E(UiXi)) because b is a function of E(AiUi) and E(UiXi) and B is a function of

E(AiUi), E(UiXi), and µuz.

One option for sensitivity analysis is for researchers to specify (µuw, µuz, µuy,E(AiUi),E(UiXi))

and investigate how causal conclusions change depending on different values of these sensitivity

parameters. This is the approach similar to the one proposed in Cobzaru et al. (2022). One

disadvantage of this approach is that researchers have to specify a large number of parameters,

i.e., du × dw + du × dz + du + du + du × dx.

Another option is to consider the upper and lower bound of the bias in order to simplify the

choice of sensitivity parameters. Importantly, (µuw, µuy, µuz) represent the effects of unobserved

confounders on NCO, NCE, and the primary outcome, conditional on observed confounders X

and the treatment A, respectively. Note that, for NCO, Wi ⊥⊥ Ai | Ui, Xi, so it does not

matter whether we condition on the treatment. To simplify sensitivity analysis, we can define

−µu ≤ µuw, µuy, µuz ≤ µu where µu is scalar and µu > 0.

Similarly, E(AiUi) and E(UiXi) represent covariances of unobserved confounders with the

treatment and observed confounders. We then define −ςu ≤ E(AiUi),E(UiXi) ≤ ςu where ςu is

scalar and ςu > 0.

Finally, we can obtain the bound of the bias by the following optimization problem.

biasmax(µu, ςu) := max
µuw,µuy ,µuz ,E(AiUi),E(UiXi)

b>(Idu − µuw(B>µuw)−1B>)µuy

s.t. − µu ≤ µuw, µuy, µuz ≤ µu, −ςu ≤ E(AiUi),E(UiXi) ≤ ςu.

biasmin(µu, ςu) := min
µuw,µuy ,µuz ,E(AiUi),E(UiXi)

b>(Idu − µuw(B>µuw)−1B>)µuy

s.t. − µu ≤ µuw, µuy, µuz ≤ µu, −ςu ≤ E(AiUi),E(UiXi) ≤ ςu.

In this way, we can reduce the number of sensitivity parameters to two from du×dw +du×dz +

du + du + du × dx. One key limitation of this approach is that the sensitivity analysis might be

too conservative because we only consider the bound of the bias.

C.3 Proof

In general, by Theorem 2, parameters of the confounding bridge function are identified by

E(Yi | Zi, Ai, Xi) = E{h(Wi, Ai, Xi) | Zi, Ai, Xi}.
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In particular, when we assume a linear confounding bridge, i.e., h(Wi, Ai, Xi; γ) = γ0 +

γaAi + γ>x Xi + γ>wWi, we can identify parameters with the following moment conditions.

E {{Yi − h(Wi, Ai, Xi; γ)} × η(Ai, Zi, Xi)} = 0

where η(Ai, Zi, Xi) = (1, Ai, Zi, Xi). We define E {{Yi − h(Wi, Ai, Xi; γ)} × η(Ai, Zi, Xi)} :=

(mi1,mia,miz,mix) where mi1 and mia are scalar, miz is a dz dimensional vector, and mix is a

dx dimensional vector. Then, we have

mi1 := E
{
Yi − (γ0 + γaAi + γ>x Xi + γ>wWi)

}
= −γ0 − E(Ai)γa − µ>0wγw + E(Ai)µay,

mia := E
{
{Yi − (γ0 + γaAi + γ>x Xi + γ>wWi)} ×Ai

}
= −E(Ai)γ0 − E(A2

i )γa −
(
E(Ai)µ

>
0w + E(AiUi)

>µuw + E(AiXi)
>µxw

)
γw − E(AiXi)

>γx

+ E(Ai)µ0y + E(A2
i )µay + E(AiUi)

>µuy + E(AiXi)
>µxy,

miz := E
{
{Yi − (γ0 + γaAi + γ>x Xi + γ>wWi)} × Zi

}
= − (µ0z + µazE(Ai)) γ0 −

(
µ0zE(Ai) + µazE(A2

i ) + E(AiUi)
>µuz + E(AiXi)

>µxz

)
γa

−
(

(E(Ai) + µazE(Ai))µ
>
0w + (µazE(AiUi)

> + µ>uz + µ>xzρ
>)µuw + E(AiXi)

>µxu

)
γw

−
(
µazE(AiXi)

> + µ>uzρ+ µ>xzΣx

)
γx

+ (µ0z + E(Ai)µaz)µ0y +
(
E(Ai)µ0z + E(A2

i )µaz + µ>uzE(AiUi) + µ>xzE(AiXi)
)
µay

+
(
µazE(AiUi)

> + µ>uz + µ>xzρ
>
)
µuy +

(
µazE(AiXi)

> + µ>uzρ+ µ>xzΣx

)
µxy,

mix := E
{
{Yi − (γ0 + γaAi + γ>x Xi + γ>wWi)} ×Xi

}
= −E(AiXi)γa −

(
Σxµxw + ρ>µuw

)
γw − Σxγx + E(AiXi)µay + Σxµxy + ρ>µuy,

where we expanded Yi, Wi and Zi with respect to (Ai, Ui, Xi) according to the data generating

process. Therefore, we can solve for parameters (γ0, γa, γx, γw) by setting (mi1,mia,miz,mix) =

02+dz+dx . By solving the moment conditions above, we obtain

B>µuwγw = B>µuy
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where B is a (du × dz) matrix and

B =

Idu − ρΣ−1
x ρ> −

(
E(AiUi)− ρΣ−1

x E(AiXi)
) (

E(AiUi)
> − E(AiXi)

>Σ−1
x ρ>

)
E(A2

i )− E(Ai)2 − E(AiXi)>Σ−1
x E(AiXi)

µuz.

When du > dz, B
> is not invertible. Following Cobzaru et al. (2022), when we assume B>µuw

is invertible (it is a (dz × dw) matrix), we obtain

γw = (B>µuw)−1B>µuy.

By solving the moment condition, we can write γa using γw as follows.

γa = µay + b>(µuy − µuwγw)

where b is a du dimensional vector and

b =
E(AiUi)− ρΣ−1

x E(AiXi)

E(A2
i )− E(Ai)2 − E(AiXi)>Σ−1

x E(AiXi)
.

Therefore, plugging in the expression of γw, we obtain

γa = µay + b>(Idu − µuw(B>µuw)−1B>)µuy,

which completes the proof. 2

D Asymptotic Properties of the DNC Estimator

D.1 Setup and Regularity Conditions

To derive asymptotic properties of our estimator, we assume the standard GMM regularity

conditions (Hansen, 1982; Newey and McFadden, 1994).

The GMM regularity conditions:

• Parameter space Θ is compact.

• m(Ln,i; θ) is differentiable in θ ∈ Θ with probability one.

• m(Ln,i; θ) and ∂
∂θm(Ln,i; θ) are continuous at each θ ∈ Θ with probability one.

• E {m(Ln,i; θ)} = 0 only when θ = θ0, and θ0 is in the interior of Θ.

• E{m(Ln,i; θ)} and E{ ∂∂θm(Ln,i; θ)} are continuous in θ.

• 1
n

∑n
i=1m(Ln,i; θ) is stochastically equicontinuous on Θ.
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• 1
n

∑n
i=1

∂
∂θm(Ln,i; θ) is stochastically equicontinuous on Θ.

• M0 = 1
n

∑n
i=1 E

{
∂
∂θm(Ln,i; θ0)

}
is full rank.

• For p that satisfies Assumption 3, supn≥1 maxi∈Nn E{|c>m(Ln,i; θ)|p} <∞ for any c with

||c||2 =
√
c>c = 1 for all θ ∈ Θ.

• For p that satisfies Assumption 3, supn≥1 maxi∈Nn E{|c̃> ∂
∂θm(Ln,i; θ)|p} < ∞ for any c̃

with ||c̃||2 =
√
c̃>c̃ = 1 for all θ ∈ Θ.

We first define the GMM objective function:

Qn(θ) =

{
1

n

n∑
i=1

E{m(Ln,i; θ)}

}>
Ω

{
1

n

n∑
i=1

E{m(Ln,i; θ)}

}
,

Q̂n(θ) =

{
1

n

n∑
i=1

m(Ln,i; θ)

}>
Ω

{
1

n

n∑
i=1

m(Ln,i; θ)

}
.

Then, the GMM estimator of θ can be written as:

θ̂ = argminθ∈ΘQ̂n(θ). (A.32)

D.2 Proof of Theorem 3

Given that our DNC estimator τ̂(a, a′) for τ(a, a′) corresponds to the first element of θ̂, we state

theoretical properties in terms of θ̂, which imply Theorem 3.

Consistency. We first want to show consistency of the GMM estimator:

θ̂
p−→ θ0.

Proof: Under Assumption 3, Proposition 3.1 by Kojevnikov et al. (2020) implies point-wise

convergence of 1
n

∑n
i=1m(Ln,i; θ). That is, for all θ ∈ Θ,

1

n

n∑
i=1

{m(Ln,i; θ)− E{m(Ln,i; θ)}}
p−→ 0. (A.33)

Under the stochastic equicontinuity, the compactness of the parameter space, and the con-

tinuity of moment, we establish the uniform convergence (Newey and McFadden, 1994).

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

{m(Ln,i; θ)− E{m(Ln,i; θ)}}

∣∣∣∣∣ p−→ 0. (A.34)

Therefore, under the GMM regularity conditions described above,

sup
θ∈Θ

∣∣∣Q̂n(θ)−Qn(θ)
∣∣∣ p−→ 0. (A.35)

Finally, under the GMM regularity conditions described above, we have (i) Qn(θ) is uniquely

minimized at θ0, (ii) parameter space Θ is compact, (iii) Qn(θ) is continuous, and (iv) the
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uniform convergence (equation (A.35)). Therefore, Theorem 2.1 of Newey and McFadden (1994)

implies

θ̂
p−→ θ0,

which completes the proof of consistency. 2

Asymptotic Normality. Next, we show asymptotic normality.

√
n(θ̂ − θ0)

d−→ Normal(0,Σ)

where

Σ = Γ0Var

(
1√
n

n∑
i=1

m(Ln,i; θ0)

)
Γ>0 ,

Γ0 = (M>0 ΩM0)−1M>0 Ω, M0 =
1

n

n∑
i=1

E
{
∂

∂θ
m(Ln,i; θ0)

}
.

Proof: By definition, we have

θ̂ = argminθ∈ΘQ̂n(θ)

We take the first order condition.
∂Q̂n(θ̂)

∂θ
= 0

Using the mean-value expansion, we have

√
n(θ̂ − θ0) = −

{
∂2Q̂n(θ̃)

∂θθ>

}−1

×
√
n
∂Q̂n(θ0)

∂θ

= −

{
∂2Q̂n(θ̃)

∂θθ>

}−1

×

{
1

n

n∑
i=1

∂

∂θ>
m(Li; θ0)

}>
Ω

1√
n

n∑
i=1

m(Li; θ0)

where θ̃ is a mean value, located between θ̂ and θ0, and[
∂2Q̂n(θ̃)

∂θ∂θ>

]
jk

=

{
1

n

n∑
i=1

∂

∂θj
m(Li; θ̃)

}>
Ω

{
1

n

n∑
i=1

∂

∂θk
m(Li; θ̃)

}

+

{
1

n

n∑
i=1

∂2

∂θj∂θk
m(Ln,i; θ̃)

}>
Ω

{
1

n

n∑
i=1

m(Ln,i; θ̃)

}
.

Therefore, under the GMM regularity conditions, Assumption 3, and consistency of θ̂,{
∂2Q̂n(θ̃)

∂θθ>

}−1

p−→ (M>0 ΩM0)−1,

{
1

n

n∑
i=1

∂

∂θ>
m(Li; θ0)

}>
Ω

p−→M>0 Ω.
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Thus,
√
n(θ̂ − θ0) = −(M>0 ΩM0)−1M>0 Ω× 1√

n

n∑
i=1

m(Ln,i; θ0) + op(1).

Finally, under Assumption 3, the Cramér–Wold device and the network CLT (Theorem 3.2) by

Kojevnikov et al. (2020) imply

1√
n

n∑
i=1

m(Ln,i; θ0,n)
d−→ N

(
0,Var

(
1√
n

n∑
i=1

m(Ln,i; θ0)

))
.

By combining the results using the Slutsky’s theorem, we obtain the desired result.

√
n(θ̂ − θ0)

d−→ Normal(0,Σ),

which completes the proof. 2

D.3 Proof of Theorem 4

We consider asymptotic properties of the network HAC variance estimator. In addition to

the regularity conditions required to prove Theorem 3, we also require the following regularity

conditions for the choice of kernel and bandwidth. With p that satisfies Assumption 3,

lim
n→∞

∑
s≥0

|ω(s/bn)− 1|ρn(s)β1−2/p
n,s = 0 a.s.,

where ρn(s) measures the average number of network peers at the distance s, ρn(s) = 1
n

∑n
i=1Nn(i; s).

Proof: Given that θ̂ is a consistent estimator of θ0, using the continuous mapping theorem

under the GMM regularity condition, we need to prove that

Λ̃n =
∑
s≥0

ω(s/bn)

 1

n

∑
i∈Nn

∑
j∈Nn(i;s)

m(Ln,i; θ0)m(Ln,j ; θ0)>

 .

is a consistent estimator of Λ0. Because we assume that m(Ln,i; θ0) is ψ-weakly dependent

(Assumption 3), under the regularity condition on the choice of kernel and bandwidth (equa-

tion (19)), Proposition 4.1 of Kojevnikov et al. (2020) implies that Λ̃n is a consistent estimator

for Λ0.

Moreover, under Assumption 3 and the GMM regularity conditions, we obtain consistency

of M̂ : M̂ −M0
p−→ 0, where M̂ = 1

n

∑n
i=1

∂
∂θm(Ln,i; θ̂) and M0 = 1

n

∑n
i=1 E

{
∂
∂θm(Ln,i; θ0)

}
.

Finally, we can combine the results to obtain the desired result.

Σ̂− Σ
p−→ 0

where

Σ = Γ0Λ0Γ>0 , Σ̂ = Γ̂Λ̂Γ̂>

Γ0 = (M>0 ΩM0)−1M>0 Ω, Γ̂ = (M̂>ΩM̂)−1M̂>Ω,

which completes the proof. 2
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D.4 Choice of Bandwidth

In general settings of network-dependent errors (Section 3.5), one must estimate a bandwidth bn

for the network HAC variance estimator (e.g., Kojevnikov et al., 2020) because how far network

dependence persists is a priori unknown. However, when the following assumption holds, we

can analytically select the bandwidth.

Assumption 10

1. The ACPE is equal to a linear function of parameters γ in the confounding bridge function.

2. There exists integer s∗ such that for units i, j with distance dn(i, j) ≥ s∗,

Ln,j ⊥⊥ Ln,i | Ai, Zi, Xi, Ui.

Assumption 10.1 holds for a linear confounding bridge function as we consider in this section.

Assumption 10.2 requires that observed data for unit j, Ln,j , is conditionally independent of

observed data for unit i, Ln,i, given unit i’s treatment, NCEs, observed pre-treatment covari-

ates, and the unmeasured confounder. This conditional independence is required only upon

conditioning on latent confounder Ui, and thus, it does not restrict network dependence of the

observed data law itself.

Importantly, we emphasize that Assumption 10.2 holds under many relevant scenarios. Fig-

ure 3 provides examples of causal graphs where Assumption 10.2 is satisfied. In Figure 3

of the main paper, suppose one uses Ci as the NCO and Zi = {Cj : j ∈ Nn(i; 1)} as the

NCEs. Then, Assumption 10.2 holds with s∗ = 2. If one uses auxiliary variables of both

peers and peers-of-peers, Zi = {Cj : j ∈ {Nn(i; 1),Nn(i; 2)}}, Assumption 10.2 holds with

s∗ = 3. Figure A1 represents another example. Suppose one exploits Yi1 as the NCO and

Zi = {Yjt : j ∈ Nn(i; 2), t ∈ {1, 2}} as the NCEs. Then, Assumption 10.2 holds with s∗ = 4.

Under Assumption 10, Lemma 7 below shows that one can analytically select the bandwidth

for the network HAC variance estimator.

Lemma 7 Suppose the conditions given in Theorem 3 hold. Under Assumption 10.1, we can

simplify the moment function to m̃(Ln,i; γ) = {Yi2 − h(Wi, Ai, Xi; γ)} × η(Ai, Zi, Xi) as our

target parameter is a linear function of γ. Then, under Assumption 10.2 with integer s∗, we

can use the following network HAC variance estimator for γ̂, which is the GMM estimator with

moment function m̃(Ln,i; γ).

V̂ar(γ̂) =
1

n
Γ̂γΛ̂s∗Γ̂

>
γ (A.36)

where

Λ̂s∗ =
s∗−1∑
s=0

ω(s/bn)

 1

n

∑
i∈Nn

∑
j∈Nn(i;s)

m̃(Ln,i; γ̂)m̃(Ln,j ; γ̂)>

 ,

Γ̂γ = (M̂>γ ΩM̂γ)−1M̂>γ Ω, and M̂γ = 1
n

∑n
i=1

∂
∂γ m̃(Ln,i; γ̂).
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The key to this result is that, to compute the variance of a sum of products of moments,

one only needs to consider moments of units with distance less than s∗ (i.e., we added s ∈
{0, 1, . . . , s∗ − 1}), as the remaining contributions are null. This is in contrast to the default

network HAC variance estimator (equation (17)) where we have to incorporate all products of

moments of units with distance less than bn, which is in general larger than s∗. We provide a

proof in Appendix D of the supplementary material.

For the linear DNC estimator, Assumption 10.1 automatically holds, and thus, as long as

Assumption 10.2 holds, we can rely on this analytical choice of bandwidth. We evaluate both

analytical and default bandwidth selections (equation (20)) in a simulation study (Appendix E).

D.4.1 Proof of Lemma 7

Under Assumption 10.1, the ACPE can be represented as a linear function of parameters γ in the

outcome confounding bridge function. Under this setting, it is sufficient to obtain multivariate

asymptotic normality and consistent variance estimator for γ. As a result, we can simplify the

moment function to be

m̃(Ln,i; γ) = {Yi2 − h(Wi, Ai, Xi; γ)} × η(Ai, Zi, Xi).

Under Assumption 10.2, there exists integer s∗ such that for units i, j with the distance dn(i, j) ≥
s∗,

Ln,j ⊥⊥ Ln,i | Ai, Zi, Xi, Ui.

For such s∗ and units i, j, we have

m̃(Ln,j ; γ0) ⊥⊥ m̃(Ln,i; γ0) | Ai, Zi, Xi, Ui. (A.37)

In addition, under Assumptions 2.2 and 2.3, we have

E{m̃(Ln,i; γ0) | Ai, Zi, Xi, Ui} = 0. (A.38)

Combining equations (A.37) and (A.38), we obtain

E{m̃(Ln,i; γ0)m̃(Ln,j ; γ0)> | Ai, Zi, Xi, Ui} = 0

=⇒ E{m̃(Ln,i; γ0)m̃(Ln,j ; γ0)>} = 0.

for integer s∗ and units i, j with the distance dn(i, j) ≥ s∗. Therefore,

Λ0 =

s∗−1∑
s=0

Λ0(s)

where

Λ0(s) =

 1

n

∑
i∈Nn

∑
j∈Nn(i;s)

E{m̃(Ln,i; γ0)m̃(Ln,j ; γ0)>}

 .

We can obtain its estimator as follows.

Λ̂s∗ =
s∗−1∑
s=0

ω(s/bn)

 1

n

∑
i∈Nn

∑
j∈Nn(i;s)

m̃(Ln,i; γ̂)m̃(Ln,j ; γ̂)>

 .
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Finally, we obtain the variance estimator for γ̂.

V̂ar(γ̂) =
1

n
Γ̂γΛ̂s∗Γ̂

>
γ . (A.39)

where Γ̂γ = (M̂>γ ΩM̂γ)−1M̂>γ Ω, and M̂γ = 1
n

∑n
i=1

∂
∂γ m̃(Ln,i; γ̂), which completes the proof. 2

D.5 Heterogeneous Expectation

In Section 3.5, we assume that the expectation of the causal peer effect, E{Yi2(a)−Yi2(a′) | Gn},
is constant across units, while we allow for network-dependent (non-independent) errors. Here,

to examine the heterogeneous expectation, we explicitly write out the conditioning on Gn. In this

section, we allow for heterogeneous expectation across units. As we observe only one sample of

interconnected units in a single network, we have to make some assumptions to make progress.

In this vein, we assume that E{Yi2(a) − Yi2(a′) | Gn} depends only on a summary statistic of

network Gn, which we denote by vector gi. For example, gi could be the network-degree of

unit i, centrality of unit i, or other network summary statistics. This is a common assumption

scholars make in practice, and is similar to the idea of the exposure mapping (Aronow and

Samii, 2017), which is used to reduce dimensionality of the potential outcomes.

Formally, we assume E{Yi2(a) − Yi2(a′) | Gn} = E{Yi2(a) − Yi2(a′) | gi}. We then posit a

model for the conditional expectation E{Yi2(a) | gi} with shared coefficients. This allows us to

accommodate heterogeneous expectation across units in the network, while we can still make

statistical inference about the target estimand with network-dependent errors.

As a concrete example, consider the following linear model with coefficients ϕ.

E{Yi2(a) | gi} = ϕ0 + ϕ1 · a+ {`(gi)>ϕ2} · a

where `(gi) is a user-specified function of gi. Under this model, we can re-write the ACPE as

follows.

τ(a, a′) :=
1

n

n∑
i=1

E{Yi2(a)− Yi2(a′) | Gn} = ϕ1 · (a− a′) + (`
>
ϕ2) · (a− a′)

where ` = 1
n

∑n
i=1 `(gi). To estimate the ACPE, we first modify the moment function as follows.

m†(Ln,i; θ) =
{
τ +

(
`(gi)− `

)>
ϕ2 · (a− a′)

}
− {h(Wi, a,Xi; γ)− h(Wi, a

′, Xi; γ)},

where θ = (τ, ϕ2, γ). We then show that E{m†(Ln,i; θ) | Gn} = 0 for all i ∈ Nn. We start with

the first term.

E
{
τ +

(
`(gi)− `

)>
ϕ2 · (a− a′) | Gn

}
= ϕ1 · (a− a′) + `(gi)

>ϕ2 · (a− a′)

= E{Yi2(a)− Yi2(a′) | Gn}.

We next consider the second term. Under Assumption 2,

E
(
{h(Wi, a,Xi; γ)− h(Wi, a

′, Xi; γ)} | Gn
)

= E{Yi2(a)− Yi2(a′) | Gn},

28



which shows that E{m†(Ln,i; θ) | Gn} = 0 for all i ∈ Nn. Therefore, we can use the following

moment functions to estimate the ACPE τ(a, a′).

m∗(Ln,i; θ) =

{
m†(Ln,i; θ)× η∗(gi)
{Yi2 − h(Wi, Ai, Xi; γ)} × η(Ai, Zi, Xi)

}
,

where η∗(gi) = (1, `(gi)
>)>. Under the same assumption used in Section 3.5, we can consistently

estimate the ACPE and construct an asymptotic confidence interval. 2
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E Simulation Study

We investigate the finite sample performance of the proposed DNC estimator of the ACPE using

networks of varying density and size. We also examine the performance of the proposed estimator

in settings where key identification assumptions are violated. In Appendix E.2, we consider

violation of the negative control assumption (Assumption 2.2), and in Appendix E.3, we examine

violation of the outcome confounding bridge assumption (Assumption 2.3) due to violation of the

underlying completeness condition. In Appendix E.4, we consider how the performance of the

estimator changes as we change the association between NCO W and unobserved confounder U .

In Appendix E.5, we consider a binary outcome to show that our nonparametric identification

results can accommodate different types of outcomes.

E.1 Finite Sample Performance

Setup. To investigate the performance of the proposed estimator, we consider two different

types of networks: the small world network and the real-world network from Add Health data.

To generate the small world network, we use sample smallworld with the rewiring probability

of 0.15 based on R package igraph. We consider two levels of densities: low (the average degree

of four) and high (the average degree of eight). Add Health project collected detailed infor-

mation about friendship networks by an in-school survey. We define friendships as symmetric

relationships: the pair of students i and j in the same school are coded as friends if either i lists

j as a friend, or j lists i as a friend, or both. While we analyze this data more thoroughly in

Section 4, we also use it here as basis for the simulation. For each simulation, we generate a

network of size n where we consider sample size n ∈ {500, 1000, 2000, 4000}. For the small-world

network, we generate a single network of size n. For the Add Health network, we retain the

original network characteristics by randomly sampling schools with probability proportional to

its size until the total sample size reaches n. The average degree of the Add Health network

ranges from 3.82 to 5.95, which are in the middle of the low-density small-world network (av-

erage degree = 4) and the high-density small world network (average degree = 8). The density

of the Add Health network ranges from 0.15 to 0.77 %, which are close to the density of the

low-density small-world network. Thus, these three different types of networks jointly cover a

wide range of network density and size. See Table A1 for more details.

Given a network, we simulate data with the following data-generating mechanism: For units

i = 1, . . . , n,

(1) Unobserved confounder with network dependence: Ui =
∑

s≥0 ζ
s
∑

j∈N (i;s) Ũj/|N (i; s)|

where ζ = 0.8 and Ũj
i.i.d.∼ Normal(0, 1). This data generating process for a network-

dependent variable follows a simulation setup of Kojevnikov et al. (2020).

(2) Observed covariates with network dependence: Xi = (Xi1, Xi2, Xi3) where, for k ∈
{1, 2, 3}, Xik =

∑
s≥0 ζ

s
∑

j∈N (i;s) X̃jk/|N (i; s)|, ζ = 0.8, and X̃jk
i.i.d.∼ Normal(0, 1).

(3) Observed auxiliary variable: Ci = Ui + β>c Xi + εi0 where εi0
i.i.d.∼ Normal(0, 1).
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(4) Focal behavior at the baseline: Yi1 = Ui + 0.05Ci + β>1 Xi + εi1 where εi1
i.i.d.∼ Normal(0, 1).

(5) Focal behavior at the follow-up: Yi2 = τAi + 0.2Yi1 + 3Ui + 0.05Ci + β>2 Xi + εi2 where

εi2
i.i.d.∼ Normal(0, 1). The treatment variable Ai is defined as Ai =

∑
j∈N (i;1) Yj1/|N (i; 1)|,

where βc = (0.05, 0.05, 0.05), β1 = (−1,−1,−1), and β2 = (−1,−1,−1). The above models

imply that the ACPE is τ , which we set to be 0.3. We can use Wi = Ci as the NCO, and Zi =∑
j∈N (i;1)Cj/|N (i; 1)| as the NCE. Under this setup, the linear confounding bridge function,

h(Wi, Ai, Xi; γ) = γα + τAi + γWWi + γ>XXi, satisfies Assumption 2.

We evaluate the performance of the proposed DNC estimator and the network HAC variance

estimator. We evaluate two choices of bandwidth for the network HAC variance estimator. First,

we use the bandwidth of 2, which we analytically derive based on Lemma 7. Second, we also

use the default bandwidth bn (equation (20)) suggested in Kojevnikov et al. (2020). We use

the Parzen kernel function, i.e., ω(x) = 1 − 6x2 + 6|x|3 if 0 ≤ |x| ≤ 1/2, ω(x) = 2(1 − |x|)3 if

1/2 < |x| ≤ 1, and ω(x) = 0 if 1 < |x|.
For reference, we also report two other estimators. (1) The ordinary least squares es-

timator where we regress Yi2 on the treatment variable Ai and a set of observed variables

(Yi1, Ci, Xi1, Xi2, Xi3). This estimator is consistent only under conditional ignorability, which is

violated due to unmeasured network confounder Ui under this simulation setup. Thus, this OLS

estimator quantifies the amount of network confounding that the DNC estimator has to correct

for. For coverage, we apply the network HAC variance estimator (Kojevnikov et al., 2020) to

residuals in order to make comparison clear. (2) We also report the difference-in-differences

style estimator proposed in Egami (2018). This estimator is consistent under the assumption

that the confounding effect of U on the primary outcome Yi2 is the same as the confounding

effect of U on Yi1. This assumption is violated under this simulation setup. For coverage, we

apply the network HAC variance estimator (Kojevnikov et al., 2020) to residuals in order to

make comparison clear.

Results. We generate 2000 simulations and evaluate estimators in terms of absolute mean

bias, standard error (computed as standard deviation of point estimates across simulations),

root mean squared error (RMSE), and coverage of 95% confidence intervals based on the network

HAC variance estimator. We standardize the first three quantities by the true ACPE to ease

interpretation. Table A1 summarizes the results of the simulation study.

Our proposed DNC estimator remained stable with relatively small bias across all scenarios,

and the bias reduced as sample size increased. As expected, standard errors of the proposed DNC

estimators were larger than the biased OLS estimators, but the RMSE of the DNC estimator

was smaller due to smaller bias. Importantly, in the OLS estimator, we include the baseline

outcome Yi1 as a control variable, and yet, we still see the OLS estimator is heavily biased.

This verifies an important point by Shalizi and Thomas (2011) that just controlling for the

baseline outcome does not allow researchers to estimate the ACPE. Importantly, our proposed

approach uses the baseline outcome as the NCO and combine it with the NCE, and this unique

combination of double negative controls allows for identification of the ACPE.
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Simulation Design DNC OLS DID

Network
Sample Average

Density Bias
Standard

RMSE
Coverage Coverage

Bias
Standard

RMSE Coverage Bias
Standard

RMSE Coverage
Size degree Error (Analytical) (Default) Error Error

SW-4 500 4.00 0.80 0.14 0.63 0.65 0.96 0.96 0.98 0.26 1.02 0.03 1.09 0.26 1.12 0.08

1000 4.00 0.40 0.07 0.42 0.42 0.95 0.95 1.00 0.18 1.01 0.00 1.10 0.18 1.12 0.00

2000 4.00 0.20 0.03 0.28 0.28 0.95 0.94 1.01 0.13 1.01 0.00 1.11 0.13 1.12 0.00

4000 4.00 0.10 0.02 0.20 0.20 0.95 0.94 1.00 0.09 1.01 0.00 1.12 0.09 1.12 0.00

SW-8 500 8.00 1.60 0.25 1.23 1.26 0.96 0.96 0.88 0.35 0.95 0.26 0.97 0.36 1.03 0.44

1000 8.00 0.80 0.11 0.58 0.59 0.96 0.96 0.88 0.25 0.91 0.04 0.97 0.25 1.00 0.10

2000 8.00 0.40 0.05 0.38 0.39 0.94 0.94 0.90 0.17 0.92 0.00 0.99 0.18 1.01 0.00

4000 8.00 0.20 0.02 0.26 0.26 0.95 0.95 0.89 0.12 0.90 0.00 0.99 0.12 0.99 0.00

Add 500 3.82 0.77 0.15 0.72 0.74 0.96 0.87 0.98 0.29 1.02 0.06 1.09 0.30 1.13 0.12

Health 1000 4.80 0.48 0.06 0.46 0.46 0.95 0.94 0.95 0.20 0.97 0.00 1.06 0.21 1.08 0.01

2000 5.69 0.28 0.03 0.31 0.31 0.95 0.95 0.93 0.15 0.94 0.00 1.03 0.15 1.04 0.00

4000 5.95 0.15 0.02 0.22 0.22 0.94 0.94 0.92 0.10 0.92 0.00 1.02 0.11 1.03 0.00

Table A1: Operating Characteristics of Estimators under Different Networks.

Note: We consider three different networks; the small world network model with the average degree of four

(SW-4) and eight (SW-8), and the Add Health network. Absolute mean bias, standard error, and RMSE for

both estimators are standardized by the true ACPE.

As the required assumption is violated, the difference-in-differences style estimator is also

biased, and the RMSE is as high as the OLS estimator, and it is much higher than that of the

proposed DNC estimator.

Compared to the low-density small-world network (SW-4), bias, standard errors, and RMSE

of the DNC estimator were larger in the high-density small-world network (SW-8). Results for

the Add Health network fell somewhere in between. The coverage of 95% confidence intervals

was close to the nominal level when the analytical bandwidth was chosen. While coverage with

default bandwidth tended to under-cover slightly at smaller sample sizes in the Add Health

network structure, it improved as sample size increased. They indicated that our proposed

standard error estimation provided valid inference. These results confirmed our theoretical

results in finite sample and demonstrated the advantages of the proposed DNC estimator.
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E.2 Violation of Negative Control Assumptions

Setup. In this section, we consider violations of the negative control assumption (Assump-

tion 2.2). In particular, we modify the data generating mechanism of Appendix E as follows.

For units i = 1, . . . , n,

(1) Unobserved confounder with network dependence: Ui =
∑

s≥0 ζ
s
∑

j∈N (i;s) Ũj/|N (i; s)|

where ζ = 0.8 and Ũj
i.i.d.∼ Normal(0, 1). This part is the same as the one used in Ap-

pendix E.

(2) Observed covariates with network dependence: Xi = (Xi1, Xi2, Xi3) where, for k ∈
{1, 2, 3}, Xik =

∑
s≥0 ζ

s
∑

j∈N (i;s) X̃jk/|N (i; s)|, ζ = 0.8, and X̃jk
i.i.d.∼ Normal(0, 1). This

part is the same as the one used in Appendix E.

(3) Observed auxiliary variable: Ci =
∑

s≥0(ζC)s
∑

j∈N (i;s) C̃j/|N (i; s)| where C̃i = Ui +

β>c Xi+εi0 where εi0
i.i.d.∼ Normal(0, 1) and βc = (0.05, 0.05, 0.05). This part is the difference

from the one used in Appendix E.

(4) Focal behavior at the baseline: Yi1 = Ui + 0.05Ci + β>1 Xi + εi1 where εi1
i.i.d.∼ Normal(0, 1)

and β1 = (−1,−1,−1). This part is the same as the one used in Appendix E.

(5) Focal behavior at the follow-up: Yi2 = τAi + 0.2Yi1 + 3Ui + 0.05Ci + β>2 Xi + εi2 where

εi2
i.i.d.∼ Normal(0, 1), and β2 = (−1,−1,−1). The treatment variable Ai is defined as

Ai =
∑

j∈N (i;1) Yj1/|N (i; 1)|. This part is the same as the one used in Appendix E.

The main and only difference is in (3) where we allow for network association between auxiliary

variable C across units. Because we use Wi = Ci as NCO, and Zi =
∑

j∈N (i;1)Cj/|N (i; 1)| as

NCE, this network association violates assumptions for NCO and NCE (Assumption 2.2).

We consider three different levels of the violation using parameter ζC ∈ {0.02, 0.10, 0.50}.
We call them “Small”, “Moderate”, and “Large” violations in Table A2. We fix sample size

to be 1000, and we generate 2000 simulations to evaluate estimators in terms of the absolute

mean bias, the standard error (computed as the standard deviation of point estimates across

simulations), the root mean squared error (RMSE), and coverage of 95% confidence intervals

based on the network HAC variance estimator. We standardize the first three quantities by the

true ACPE to ease interpretation.

Results. Table A2 summarizes the results of the simulation study. Our proposed DNC esti-

mator has small bias and has reasonable coverage when the violation is “small.” However, as we

expect, the larger is the violation, the bias is larger and coverage performance becomes poorer.
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Simulation Design DNC

Network Violation Bias
Standard

RMSE
Coverage Coverage

Error (Analytical) (Default)

SW-4 Small 0.04 0.38 0.39 0.94 0.93

Moderate 0.32 0.30 0.45 0.78 0.78

Large 0.74 0.25 0.78 0.12 0.12

SW-8 Small 0.02 0.53 0.53 0.95 0.94

Moderate 0.26 0.43 0.50 0.87 0.86

Large 0.66 0.35 0.74 0.46 0.46

Add Health Small 0.03 0.41 0.41 0.94 0.93

Moderate 0.34 0.34 0.48 0.80 0.78

Large 0.81 0.28 0.86 0.13 0.13

Table A2: Operating Characteristics when the Negative Control Assumptions are Violated.

Note: We consider three different levels of violation: “Small” (ζC = 0.02), “Moderate” (ζC = 0.10), and “Large”

(ζC = 0.50). We examine the same three different networks; the small world network model with the average

degree of four (SW-4) and eight (SW-8), and the Add Health network. For the DNC estimator, we report the

absolute mean bias, the standard error, the RMSE, and coverage of the 95% confidence intervals based on the

analytical bandwidth and the default bandwidth. The absolute mean bias, the standard error, and the RMSE

for both estimators are standardized by the true ACPE.
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E.3 Violation of Confounding Bridge Assumption due to Completeness

Setup. In this section, we consider violations of the outcome confounding bridge assumption

(Assumption 2.3). In particular, we consider violation of the completeness condition (Assump-

tion 5) we use to prove the existence of an outcome confounding bridge function.

In particular, we modify the data generating mechanism of Appendix E as follows. For units

i = 1, . . . , n,

(1) Two unobserved confounders with network dependence: For k ∈ {1, 2},
Uik =

∑
s≥0 ζ

s
∑

j∈N (i;s) Ũjk/|N (i; s)| where ζ = 0.8 and Ũjk
i.i.d.∼ Normal(0, 1). This part

is the difference from the one used in Appendix E.

(2) Observed covariates with network dependence: Xi = (Xi1, Xi2, Xi3) where, for k ∈
{1, 2, 3}, Xik =

∑
s≥0 ζ

s
∑

j∈N (i;s) X̃jk/|N (i; s)|, ζ = 0.8, and X̃jk
i.i.d.∼ Normal(0, 1). This

part is the same as the one used in Appendix E.

(3) Observed auxiliary variable: Ci = Ui1+βUCUi2+β>c Xi+εi0 where εi0
i.i.d.∼ Normal(0, 1) and

βc = (0.05, 0.05, 0.05). The part of Ui2 is the difference from the one used in Appendix E.

(4) Focal behavior at the baseline: Yi1 = Ui1 + βUY 1Ui2 + 0.05Ci + β>1 Xi + εi1 where εi1
i.i.d.∼

Normal(0, 1) and β1 = (−1,−1,−1). The part of Ui2 is the difference from the one used

in Appendix E.

(5) Focal behavior at the follow-up: Yi2 = τAi+0.2Yi1 +3Ui1 +βUY 2Ui2 +0.05Ci+β>2 Xi+ εi2

where εi2
i.i.d.∼ Normal(0, 1), and β2 = (−1,−1,−1). The treatment variable Ai is defined

as Ai =
∑

j∈N (i;1) Yj1/|N (i; 1)|. The part of Ui2 is the difference from the one used in

Appendix E.

The main difference is in (1) where we allow for two separate unmeasured confounders Ui1 and

Ui2. Yet, we use Wi = Ci as NCO, and Zi =
∑

j∈N (i;1)Cj/|N (i; 1)| as NCE. Therefore, the

number of unmeasured confounders is larger than the number of NCO, and this violates the

completeness condition (Assumption 5). In this case, an outcome confounding bridge does not

exist and Assumption 2.3 is violated.

We consider three different levels of violation using parameters (βUC , βUY 1, βUY 2). We define

“Small”, “Moderate”, and “Large” violations as follows.

• “Small”: βUC = 0.1, βUY 1 = βUY 2 = 0.005

• “Moderate”: βUC = 0.25, βUY 1 = βUY 2 = 0.0125

• “Large”: βUC = 0.5, βUY 1 = βUY 2 = 0.025

We fix sample size to be 1000, and we generate 2000 simulations to evaluate estimators in

terms of the absolute mean bias, the standard error (computed as the standard deviation of

point estimates across simulations), the root mean squared error (RMSE), and coverage of 95%

confidence intervals based on the network HAC variance estimator. We standardize the first

three quantities by the true ACPE to ease interpretation.
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Results. Table A3 summarizes the results of the simulation study. Our proposed DNC esti-

mator has small bias and has reasonable coverage when the violation is “small.” However, as we

expect, the larger is the violation, the bias is larger and coverage performance becomes poorer.

Simulation Design DNC

Network Violation Bias
Standard

RMSE
Coverage Coverage

Error (Analytical) (Default)

SW-4 Small 0.02 0.41 0.41 0.94 0.94

Moderate 0.20 0.38 0.43 0.89 0.89

Large 0.75 0.38 0.84 0.39 0.39

SW-8 Small 0.07 0.56 0.56 0.95 0.95

Moderate 0.11 0.54 0.56 0.91 0.91

Large 0.58 0.48 0.75 0.68 0.68

Add Health Small 0.04 0.44 0.45 0.95 0.94

Moderate 0.17 0.44 0.47 0.89 0.89

Large 0.70 0.41 0.81 0.49 0.49

Table A3: Operating Characteristics when the Confounding Bridge Assumption and the Com-

pleteness Condition are Violated.

Note: We consider three different levels of violation: “Small”, “Moderate”, and “Large” (see above for their

definitions). We examine the same three different networks; the small world network model with the average

degree of four (SW-4) and eight (SW-8), and the Add Health network. For the DNC estimator, we report the

absolute mean bias, the standard error, the RMSE, and coverage of the 95% confidence intervals based on the

analytical bandwidth and the default bandwidth. The absolute mean bias, the standard error, and the RMSE

for both estimators are standardized by the true ACPE.
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E.4 Association of W between U

In this section, we consider how the performance of the DNC estimator changes as we change

the association between NCO W and unobserved confounder U .

For the data generating process, we change only one aspect of the data generating process

in Appendix E.1. In particular, we vary parameter βUC ∈ {0.0, 0.5, 1.0, 1.5} in the following

data generating process. In Appendix E.1, we used βUC = 1.0.

(3) Observed auxiliary variable: Ci = βUCUi + β>c Xi + εi0 where εi0
i.i.d.∼ Normal(0, 1).

Importantly, when βUC = 0, NCO Wi = Ci is unrelated to unobserved confounder U , and thus,

the outcome confounding bridge assumption (Assumption 2.3) is violated. When the association

between W and U is small, even if the outcome confounding bridge is identified, the performance

of the estimator might be poor.

Results. We generate 2000 simulations and evaluate estimators in terms of absolute mean

bias, standard error (computed as standard deviation of point estimates across simulations),

root mean squared error (RMSE), and coverage of 95% confidence intervals based on the network

HAC variance estimator. We set the sample size to be 1000, and we standardize the first three

quantities by the true ACPE to ease interpretation.

Table A4 summarizes the results of the simulation study. Several points are worth noting.

First, when βUC = 0, because the required causal assumption is violated, the DNC estimator

is not consistent and does not have correct coverage. Second, as long as βUC > 0, the ACPE

is identified, and thus, the simulation results show that the DNC estimator is consistent and

has correct coverage. Importantly, even when βUC = 0.5, we find that the DNC estimator

maintains correct coverage. However, it is important to see that standard errors are large and

the RMSEs are larger than those of the OLS estimator. This is similar to the phenomena of

weak instrumental variable (i.e., identified but have poor finite sample performance), and this is

what we can call the weak negative control problem. Finally, we see that when the association

between U and W (i.e., βUC) becomes stronger, the performance of the DNC estimator improves

dramatically. While maintaining correct coverage, the DNC estimator now has much smaller

standard errors and RMSEs. This simulation study highlights the importance of choosing NCO

W that is strongly associated with unobserved confounder U .
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Simulation Design DNC OLS

βUC Network
Average

Density Bias
Standard

RMSE
Coverage Coverage

Bias
Standard

RMSE Coverage
degree Error (Analytical) (Default) Error

0.0 SW-4 4.00 0.40 3.26 2.38 4.04 0.24 0.24 1.48 0.22 1.50 0.00

0.0 SW-8 8.00 0.80 2.72 4.86 5.57 0.30 0.30 1.30 0.29 1.33 0.00

0.0 Add Health 4.82 0.48 3.24 3.87 5.04 0.25 0.24 1.40 0.26 1.42 0.00

0.5 SW-4 4.00 0.40 0.81 13.74 13.77 0.94 0.94 1.32 0.20 1.33 0.00

0.5 SW-8 8.00 0.80 1.61 21.53 21.59 0.94 0.94 1.16 0.28 1.19 0.01

0.5 Add Health 4.80 0.48 0.39 10.82 10.83 0.94 0.94 1.26 0.24 1.28 0.00

1.0 SW-4 4.00 0.40 0.06 0.41 0.42 0.95 0.95 0.99 0.18 1.01 0.00

1.0 SW-8 8.00 0.80 0.09 0.56 0.57 0.95 0.95 0.87 0.24 0.90 0.04

1.0 Add Health 4.87 0.49 0.06 0.45 0.45 0.95 0.94 0.94 0.20 0.96 0.00

1.5 SW-4 4.00 0.40 0.02 0.26 0.26 0.95 0.95 0.71 0.15 0.73 0.00

1.5 SW-8 8.00 0.80 0.04 0.34 0.35 0.95 0.95 0.62 0.21 0.66 0.14

1.5 Add Health 4.82 0.48 0.03 0.29 0.29 0.94 0.93 0.67 0.18 0.69 0.03

Table A4: Operating Characteristics when the Association between U and W Changes.

Note: We consider four different levels of association: βUC ∈ {0.0, 0.5, 1.0, 1.5}. We examine the same three

different networks; the small world network model with the average degree of four (SW-4) and eight (SW-8),

and the Add Health network. For the DNC estimator, we report the absolute mean bias, the standard error, the

RMSE, and coverage of the 95% confidence intervals based on the analytical bandwidth and the default

bandwidth. The absolute mean bias, the standard error, and the RMSE for both estimators are standardized by

the true ACPE.
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E.5 Binary Outcomes

In this section, we consider a binary outcome to show that our nonparametric identification

results can accommodate different types of outcomes. Given three different networks as we

introduced in Appendix E.1, we simulate data with the following data-generating mechanism:

For units i = 1, . . . , n,

(1) Unobserved confounder with network dependence: Ui = 0.5
∑

s≥0 ζ
s
∑

j∈N (i;s) Ũj/|N (i; s)|

where ζ = 0.8 and Ũj
i.i.d.∼ Normal(0, 0.5). This data generating process for a network-

dependent variable follows a simulation setup of Kojevnikov et al. (2020).

(2) Observed auxiliary variable: Ci = 2Ui + εi0 where εi0
i.i.d.∼ Normal(0, 0.1).

(3) Focal behavior at the baseline: Yi1 follows a Bernoulli distribution with Pr(Yi1 = 1 | Ui) =

Φ(0.2 + Ui) where Φ(·) is the CDF of the standard normal distribution.

(4) Negative Control Outcome: Wi = Zi + Ai + εi1 where εi1
i.i.d.∼ Normal(0, 0.5), Zi =∑

j∈N (i;1)Cj/|N (i; 1)|, and Ai =
∑

j∈N (i;1) Yj1/|N (i; 1)|. This data generating process

follows a result for the binary outcome in Tchetgen Tchetgen et al. (2020a).

(5) Focal behavior at the follow-up: Yi2 follows a Bernoulli distribution with Pr(Yi2 = 1 |
W̃i, Ai) = Φ(β1W̃i+β2Ai) where W̃i = Zi−1.2Ai and Φ(·) is the CDF of the standard nor-

mal distribution. As before, Zi =
∑

j∈N (i;1)Cj/|N (i; 1)|, and Ai =
∑

j∈N (i;1) Yj1/|N (i; 1)|.
We follow a result for the binary outcome in Tchetgen Tchetgen et al. (2020a), and thus,

we set (β1, β2) = (η1, η2)× φ where φ = (1 + (0.5η1)2)−1/2.

The above models imply that the oucome confounding bridge is h(Wi, Ai) = Φ(η1Wi + η2Ai).

In this simulation, we set (η1, η2) = (0.3, 0.6) and, the true ACPE is about 0.23, while the exact

value of the true ACPE depends on simulation settings. The key difference from other simula-

tions is that the outcome variables Yi1 and Yi2 are both binary variables: in this simulation, we

use the probit link. To have a clear simulation, we follow Tchetgen Tchetgen et al. (2020a) and

use the closed form solution for the outcome confounding bridge in the case of binary outcomes.

Please see Appendix of Tchetgen Tchetgen et al. (2020a) for more details about how to generate

simulations for binary outcomes in the double negative control setting.

We evaluate the performance of the proposed DNC estimator and the network HAC vari-

ance estimator. For reference, we also report the usual regression estimator where we regress Yi2

on the treatment variable Ai and a set of observed variables (Yi1, Ci) in the probit regression.

This estimator is consistent only under conditional ignorability, which is violated due to unmea-

sured network confounder under this simulation setup. Thus, this probit regression estimator

quantifies the amount of network confounding that the DNC estimator has to correct for.

Results. Table A5 summarizes the results of the simulation study. Our proposed DNC es-

timator remains stable with relatively small bias across all scenarios and has correct coverage

across simulation settings. In contrast, the probit regression has a large bias and incorrect

coverage across simulation settings.
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Simulation Design DNC Probit

Network
Average

Density Bias
Standard

RMSE Coverage Bias
Standard

RMSE Coverage
degree Error Error

SW-4 500 4.00 0.80 0.00 0.42 0.42 0.95 0.49 0.36 0.61 0.74

1000 4.00 0.40 0.00 0.30 0.30 0.95 0.49 0.26 0.55 0.54

2000 4.00 0.20 0.00 0.21 0.21 0.94 0.48 0.19 0.52 0.27

4000 4.00 0.10 0.00 0.15 0.15 0.94 0.49 0.13 0.50 0.04

SW-8 500 8.00 1.60 0.02 0.61 0.61 0.95 0.46 0.53 0.70 0.85

1000 8.00 0.80 0.02 0.43 0.43 0.95 0.48 0.37 0.60 0.76

2000 8.00 0.40 0.01 0.30 0.30 0.95 0.46 0.27 0.54 0.59

4000 8.00 0.20 0.02 0.22 0.22 0.95 0.48 0.19 0.51 0.29

Add 500 3.82 0.77 0.01 0.45 0.45 0.93 0.52 0.36 0.63 0.68

Health 1000 4.80 0.48 0.01 0.33 0.33 0.94 0.51 0.27 0.58 0.51

2000 5.69 0.28 0.01 0.24 0.24 0.94 0.50 0.20 0.54 0.29

4000 5.95 0.15 0.01 0.16 0.16 0.95 0.49 0.14 0.51 0.06

Table A5: Operating Characteristics with Binary Outcome Variables.

Note: We examine the same three different networks; the small world network model with the average degree of

four (SW-4) and eight (SW-8), and the Add Health network. For the DNC estimator, we report the absolute

mean bias, the standard error, the RMSE, and coverage of the 95% confidence intervals. The absolute mean

bias, the standard error, and the RMSE for both estimators are standardized by the true ACPE.
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F Extensions

F.1 Higher-order Peer Effects

Following standard causal peer effect literature, we have focused on the causal effect from peers

as the causal estimand of primary interest (the ACPE defined in equation (8)). It is important

to emphasize that all results in Section 3 do not rule out causal effects from higher-order peers

(e.g., peers-of-peers). If they exist, one can simply adjust for focal behaviors of higher-order

peers as observed pre-treatment covariates Xi. We have considered such higher-order peer

effects as nuisance when studying identification and estimation of the ACPE. In this section, we

clarify that the proposed double negative control approach can also be used for identification

and estimation of higher-order causal peer effects as well.

The study of such higher-order peer effects can be important for several reasons. First, in

some applications, focal behaviors might be directly affected by higher-order peers even if peers

might not change their behaviors. For example, information can diffuse from higher-order peers

even if there is no behavioral change among peers. Second, estimation of higher-order peer

effects can account for some forms of misspecification of underlying networks. It is possible that

observed network and time might not perfectly match the underlying process through which

units causally affect peers. For example, it is possible that units affect peers faster, and units

can affect their peers-of-peers within one observed time interval. Additionally, the observed

network might miss some ties between units, and thus, two units with the observed shortest

distance of two might in fact be connected directly in the underlying true network. In such

cases, we want to estimate causal effects from peers and peers-of-peers jointly.

One can explicitly include focal behaviors of higher-order peers into the potential outcome.

Suppose we are interested in causal effects from all units within network distance s†. We define

a vector of the treatment variable Ãi = (Ai1, . . . , Ais†) where Ais = φ({Yj1 : j ∈ N (i; s)}) ∈ R,

s ∈ {1, . . . , s†}, and function φ is specified by a researcher based on subject matter knowledge.

When s† = 1, this setup reduces to the one in Section 3. The potential outcome Yi2(ã) is defined

as the outcome that would realize when the treatment vector is set to Ãi = ã. We can then

define the higher-order ACPE as

τ(ã, ã′) :=
1

n

n∑
i=1

E
{
Yi2(ã)− Yi2(ã′)

}
(A.40)

where ã, ã′ ∈ Ã where Ã is the support of Ã. For example, τ((a1, a2), (a1, a
′
2)) captures the

second-order peer effect by fixing the treatment value of peers and changing the treatment

value of peers-of-peers. Importantly, while this setup considers up to the s†-th order peer effects

as the causal estimand, this does not assume the absence of causal effects from peers at distance

more than s†. We only view them as nuisance.

We can straightforwardly generalize Assumption 2 and Theorem 2 to this setting of higher-

order peer effects by replacing Ai with Ãi. The selection of negative controls can also proceed

in similar fashion. A plausible candidate is again an auxiliary variable Ci that (a) does not
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affect network relationships and (b) does not affect variables of other units. For example, even

if we add the second-order peer effects to Figure 3.(i) (i.e., a causal arrow from Y41 to Y22), the

original choice of negative controls — C2 as the NCO and {C1, C3, C4} as the NCEs — remains

valid.

Another candidate for negative controls is the focal behavior itself. For example, if one were

to add the second-order peer effects to Figure 3.(ii) (i.e., an causal arrow from Y41 to Y22), the

original choice of NCO Y21 would remain valid, while the original choice of NCEs {Y41, Y42}
would no longer be valid. If all third-order peer effects are absent, focal behaviors of third-order

peers would be a plausible candidate for the NCEs. In summary, while the specific choice of

negative controls need to be adjusted when examining higher-order ACPE, the two primary

ways of sƒxrelecting negative controls we discussed in Section 3 continue to be useful.

Finally, estimation and inference can proceed as in Theorems 3 and 4 can be extended by

replacing Ai with Ãi in the definition of Ln,i.

F.2 Misspecification

For the sake of clarity in the exposition, we restricted presentation of all main results to the

causal effect from peers. While it is impossible to account for all forms of misspecification of

exposure mapping φ, we consider one general form. Specifically, we now suppose that higher-

order peers (e.g., peers-of-peers) can have causal effects and yet researchers do not know exactly

how far peer effects exist. Formally, suppose causal peer effects are nonzero from all units within

network distance s∗. We call it the causal network distance as causal peer effects exist for all

units within this network distance s∗. We assume in this section that analysts do not know the

exact value of the causal network distance s∗, which is a common scenario in practice.

This potential misspecification is important because it is possible that the observed network

does not perfectly match the underlying process through which units causally affect network

peers. For example, units can affect higher-order peers possibly because the observed network

might miss some ties between units, and thus, two units with the observed shortest distance of

two might in fact be connected directly in the underlying true network.

When researchers know the exact value of the causal network distance s∗, they can use

results in Appendix F.1 to identify higher-order peer effects directly. Here, we consider how to

test the potential misspecification using double negative controls.

F.2.1 Specification Test

We assume that, while researchers do not know the exact value of the causal network distance

s∗, they know its upper bound s∗0 where s∗ ≤ s∗0. This is usually a plausible assumption in

practice, and more importantly, by picking a larger value of s∗0 (e.g., 5), researchers can almost

always satisfy this requirement, while the proposed test below might be more conservative.

Importantly, as we discussed in Appendix F.1, when researchers use an auxiliary variable

Ci that (a) does not affect network relationships and (b) does not affect variables of other units

for double negative controls, researchers do not need to change the choice of negative controls.

By including peers up to s∗0 as discussed in Appendix F.1, researchers can directly test whether
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causal peer effects from high-order peer effects are nonzero. In practice, when researchers find

that causal peer effects are nonzero even for peers at network distance s∗0, it is likely that the

chosen value of s∗0 is small, so we recommend checking a larger value of s∗0.

It is also interesting to consider cases when researchers use the focal behavior as candidates

for negative controls. In this case, the focal behaviors of the second-order peers {Yjt : j ∈
N (i; 2), t ∈ {1, 2}} (those we discussed in Section 3.3.2) are no longer valid negative control

exposures as they might affect ego’s outcomes Yi2 or be affected by the negative control outcome

Yi1 (ego’s focal behavior at the baseline).

Under this setup, we can use the same negative control outcome Yi1, but we change the

choice of the negative control exposures.

Z
s∗0
i ≡ {Yjt : j ∈ Nn(i; `), t ∈ {1, 2} where ` > s∗0, ` ∈ Z}, (A.41)

which are the focal behaviors of neighbors that are at the distance more than s∗0 from unit i.

We can then construct a specification test. Importantly, Zsi ⊆ Zs
′
i where s > s′. This nested

structure implies that, under the assumption that the causal network distance is at most s∗0,

we can test whether the true causal network distance is equal to or smaller than s̃, which is

smaller than s∗0. For example, if we assume that the true causal network distance is at most 2,

we can test whether there is any misspecification or not, i.e., s∗ = 1. This can be done within

the GMM framework as the J-test (Hansen, 1982).

Under the assumption that the true causal network distance is at most s∗0, the following J

statistic follows an asymptotic chi-square distribution when the true network causal distance is

also equal to or smaller than s̃.

Js̃,s∗0 ≡ n

{
1

n

n∑
i=1

m(Ln,i; θ̂
s̃,s∗0
n )

}>
Ω

{
1

n

n∑
i=1

m(Ln,i; θ̂
s̃,s∗0
n )

}
d−→ χ2

k−p

where k is the number of moments, p is the number of parameters. m(·) is the moment function

and θ̂
s̃,s∗0
n is the GMM estimator with the following negative control exposures:

Z
s̃,s∗0
i ≡ {Yjt : j ∈ Nn(i; `), t ∈ {1, 2} where s̃+ 1 ≤ ` ≤ s∗0 + 1, ` ∈ Z}. (A.42)

F.3 Identification of Spillover Effects in Observational Studies

In this paper, we have focused on the causal peer effect, which is defined as the causal effect

of peers’ focal behaviors on an ego’s behavior. In our application, we studied the causal peer

effect on the GPA in a friendship network. peers’ GPA served as a treatment variable. The

spillover effect is a related but different causal quantity of interest. In the literature of spillover

effects, we have a treatment variable defined separately from the focal behavior of interest. For

example, one might be interested in the causal effect of a scholarship, which is separately defined

from the GPA, the outcome of interest. In this example, the spillover effect of a scholarship

is the causal effect of whether peers receive scholarships on the GPA of an ego. See Ogburn

and VanderWeele (2014) for further discussion on the difference between causal peer effects and

spillover effects.
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The vast majority of the spillover effect literature has focused on randomized experiments

where identification of the spillover effect stems from randomized treatments (e.g., Sobel, 2006;

Hudgens and Halloran, 2008; Tchetgen Tchetgen and VanderWeele, 2010; Aronow and Samii,

2017). See Halloran and Hudgens (2016) for a review. Recent papers examine identification

and estimation of spillover effects in observational studies under conditional ignorability (e.g.,

Ogburn et al., 2017; Tchetgen Tchetgen et al., 2020b; Forastiere et al., 2020). In the absence of

randomization in observational studies, conditional ignorability assumption might be violated

due to unmeasured network confounding. Researchers can use our proposed double negative

control approach for identification and estimation of spillover effects as well. The key difference

from the main results of Section 3 is in selection of negative controls as the definition of the

treatment differs. Regardless, we can naturally generalize Assumptions 2 and 3 to prove iden-

tification and asymptotic properties for the spillover effect estimation analogous to Theorems 2

and 3.
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Lehmann, E. L. and Scheffé, H. (2012b). Completeness, Similar Regions, and Unbiased Estima-

tion—Part II. In Selected Works of EL Lehmann, pages 269–286. Springer.

Liu, L. and Tchetgen Tchetgen, E. (2020). Regression-based Negative Control of Homophily in

Dyadic Peer Effect Analysis. arXiv preprint arXiv:2002.06521 .

McFowland III, E. and Shalizi, C. R. (2021). Estimating Causal Peer Influence in Homophilous

Social Networks by Inferring Latent Locations. Journal of the American Statistical Associa-

tion, pages 1–27.

Miao, W., Shi, X., and Tchetgen Tchetgen, E. (2018a). A Confounding Bridge Approach for

Double Negative Control Inference on Causal Effects. arXiv preprint arXiv:1808.04945 .

Miao, W., Geng, Z., and Tchetgen Tchetgen, E. J. (2018b). Identifying Causal Effects With

Proxy Variables of An Unmeasured Confounder. Biometrika, 105(4), 987–993.

Newey, W. K. and McFadden, D. (1994). Large Sample Estimation and Hypothesis. In R. Engle

and D. McFadden, editors, Handbook of Econometrics, pages 2112–2245. North Holland.

Newey, W. K. and Powell, J. L. (2003). Instrumental variable estimation of nonparametric

models. Econometrica, 71(5), 1565–1578.

Ogburn, E. L. and VanderWeele, T. J. (2014). Causal Diagrams for Interference. Statistical

Science, 29(4), 559–578.

Ogburn, E. L., Sofrygin, O., Diaz, I., and van der Laan, M. J. (2017). Causal Inference for

Social Network Data. arXiv preprint arXiv:1705.08527 .

46



Severini, T. A. and Tripathi, G. (2006). Some Identification Issues in Nonparametric Linear

Models with Endogenous Regressors. Econometric Theory , 22(2), 258–278.

Shalizi, C. R. and Thomas, A. C. (2011). Homophily and Contagion are Generically Confounded

in Observational Social Network Studies. Sociological Methods & Research, 40(2), 211–239.

Shao, J. (2003). Mathematical Statistics. Springer Science & Business Media.

Shi, X., Miao, W., Nelson, J. C., and Tchetgen Tchetgen, E. J. (2020). Multiply Robust Causal

Inference With Double-Negative Control Adjustment for Categorical Unmeasured Confound-

ing. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82(2), 521–

540.

Sobel, M. E. (2006). What Do Randomized Studies Of Housing Mobility Demonstrate? Causal

Inference In The Face Of Interference. Journal of the American Statistical Association,

101(476), 1398–1407.

Sofer, T., Richardson, D. B., Colicino, E., Schwartz, J., and Tchetgen Tchetgen, E. J. (2016).

On Negative Outcome Control of Unobserved Confounding as a Generalization of Difference-

in-Differences. Statistical Science, 31(3), 348.

Tchetgen Tchetgen, E. J. and VanderWeele, T. J. (2010). On Causal Inference in The Presence

of Interference. Statistical Methods in Medical Research, 21(1), 55–75.

Tchetgen Tchetgen, E. J., Ying, A., Cui, Y., Shi, X., and Miao, W. (2020a). An Introduction

to Proximal Causal Learning. arXiv preprint arXiv:2009.10982 .

Tchetgen Tchetgen, E. J., Fulcher, I., and Shpitser, I. (2020b). Auto-G-Computation of Causal

Effects on a Network. Journal of the American Statistical Association.

47


	A Identification
	A.1 Proof of Lemma 4
	A.1.1 Setup
	A.1.2 Main Results
	A.1.3 Proof

	A.2 Details on Completeness Conditions
	A.3 Proof of Lemma 1
	A.4 Proof of Lemma 2
	A.5 Proof of Theorem 2
	A.6 Identification of the ACPE under Alternative Assumptions
	A.6.1 Proof of Theorem 5
	A.6.2 Proof of Lemma 6

	A.7 Using Focal Behaviors as Negative Controls in Network Settings
	A.8 Proof: Identification under Linear Confounding Bridge

	B DNC Estimator for Dyadic Data
	C Sensitivity Analysis with A Linear Confounding Bridge
	C.1 Setup
	C.2 Sensitivity Analysis
	C.3 Proof

	D Asymptotic Properties of the DNC Estimator
	D.1 Setup and Regularity Conditions
	D.2 Proof of Theorem 3
	D.3 Proof of Theorem 4
	D.4 Choice of Bandwidth
	D.4.1 Proof of Lemma 7

	D.5 Heterogeneous Expectation

	E Simulation Study
	E.1 Finite Sample Performance
	E.2 Violation of Negative Control Assumptions
	E.3 Violation of Confounding Bridge Assumption due to Completeness
	E.4 Association of W between U
	E.5 Binary Outcomes

	F Extensions
	F.1 Higher-order Peer Effects
	F.2 Misspecification
	F.2.1 Specification Test

	F.3 Identification of Spillover Effects in Observational Studies

	References

