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Abstract

Generative artificial intelligence (AI) has shown incredible leaps in performance across
data of a variety of modalities including texts, images, audio, and videos. This affords so-
cial scientists the ability to annotate variables of interest from unstructured media. While
rapidly improving, these methods are far from perfect and, as we show, even ignoring the
small amounts of error in high accuracy systems can lead to substantial bias and invalid
confidence intervals in downstream analysis. We review how using design-based supervised
learning (DSL) guarantees asymptotic unbiasedness and proper confidence interval cover-
age by making use of a small number of expert annotations. While originally developed for
use with large language models in text, we present a series of applications in the context
of image analysis, including an investigation of visual predictors of the perceived level of
violence in protest images, an analysis of the images shared in the Black Lives Matter
movement on Twitter, and a study of US outlets reporting of immigrant caravans. These
applications are representative of the type of analysis performed in the visual social sci-
ence landscape today, and our analyses will exemplify how DSL helps us attain statistical
guarantees while using automated methods to reduce human labor.
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1 Introduction

Visual media is increasingly an inescapable part of social and political communication. Pre-
dominantly visual sites such as Instagram, TikTok, and YouTube, are among the most heavily
trafficked social media platforms. Yet many social science studies have constrained themselves to
study text—often throwing away the visual information available for mixed environments such
as Twitter.1 Until recently this was a practical concern—methods for annotating documents
using ‘text as data’ approaches were well developed (Grimmer and Stewart, 2013; Grimmer,
Roberts and Stewart, 2022)—but annotation techniques for images were in their infancy. As
convolutional neural networks (CNNs) became accessible for social scientists, work began to
appear introducing ‘image as data’ pipelines to social scientists (Joo and Steinert-Threlkeld,
2022; Webb Williams, Casas and Wilkerson, 2020). The recent advent of generative artificial
intelligence (AI) has only hastened this transformation, allowing an increasing number of an-
notation tasks on diverse media to be done with little to no training data. These methods are
rapidly changing, rapidly improving, and yet are still prone to errors, particularly for certain
types of media and tasks. This raises the question that we address in this paper—how do we
retain provable statistical guarantees while using an ever-changing array of methods to annotate
our data?

Consider the example of Casas and Webb Williams (2019) who are interested in whether
images are a key factor in political mobilization online. To study this question, they collected
almost 9,500 images posted on Twitter from one week in 2015 around a Black Lives Matter
protest. They are interested in how the emotional content of the images—for example, whether
they evoke anger, enthusiasm, or fear—is related to the attention these messages get on Twitter.
To investigate these questions, they manually annotated every image for seven different variables
using more than 1200 MTurk workers and 2 undergraduate research assistants.

If Casas and Webb Williams were starting their work today, they would have a wide range
of options. They could label a few thousand images by hand and train a convolutional neural
network to label the rest (Webb Williams, Casas and Wilkerson, 2020). They could instead
prompt a multimodal large language model to label the images without any training data(Ziems
et al., 2024; Gilardi, Alizadeh and Kubli, 2023). Depending on the difficulty of the task and the
type of data, these annotations might be accurate, and they might not be. The capabilities of
the models are often rapidly shifting, and it is unclear what results will look like in the future.

Like most social scientists, Casas and Webb Williams (2019) aren’t interested in the an-
notation on any one image, they are interested in downstream analyses using annotations as
variables (e.g., do images that evoke more anger get shared more?). These questions can often
be framed as a regression in which the annotation of the image takes on the role of either the
outcome, an independent variable, or both. In the case of Casas and Webb Williams (2019),
they are regressing an observed outcome (number of retweets) on seven independent variables
derived from image annotations and observed characteristics of the poster (e.g., number of fol-
lowers, number of tweets, etc.). As we will show later, off-the-shelf generative AI systems do a
remarkably good job on this image annotation task, producing high-accuracy labels with only
100 examples. A social scientist might try the tool out, sample a subset of images to validate
labels, and then—if the accuracy of the automated annotation looks ‘good enough’—move on
to running their downstream analysis ignoring any prediction error.

While the capacity of generative AI to automate these tasks with little expert supervision

1Although now known as X, we refer to the platform as Twitter throughout the paper.

2



is exciting, it thrusts to the fore two central tensions that animate this piece. First, we don’t
know the annotations are accurate until we evaluate them against some kind of expert coding.
This means that we can never escape doing some annotation ourselves as researchers. Second,
when automated annotations have errors—but particularly when those errors are correlated
with other variables in the regression—the estimator will exhibit asymptotic bias (Egami et al.,
2024b). This, in turn, means that confidence intervals will not attain nominal coverage (i.e.,
95% confidence intervals will not contain the truth 95% of the time across samples), and as
our sample gets larger and larger, we will become increasingly certain of the wrong answer,
even when accuracy is very high (unless accuracy is 100%). Given known gender and racial
biases in vision models (Buolamwini and Gebru, 2018; Wang et al., 2022; Barocas, Hardt and
Narayanan, 2023), we may reasonably assume that errors are often correlated with variables of
social science interest. In short, we don’t know we have high accuracy until we check, and if
the accuracy isn’t perfect, we will asymptotically get biased estimates. The first issue destroys
the dream of doing computer vision work in the social sciences without expert annotation, and
the second means that even our most accurate automated systems are probably not accurate
enough to give us the statistical properties we expect.

When the downstream analysis can be framed as a regression, we demonstrate how the
recently proposed Design-based Supervised Learning (DSL) framework (Egami et al., 2024a,b)
enables researchers to harness generative AIs without introducing bias from prediction errors
in automated AI annotations. Remarkably, by combining a small set of expert annotations
with the predictions from computer vision models, we can attain provable statistical guarantees
for the downstream regression model including asymptotic unbiasedness and proper coverage
of confidence intervals, without needing to assume anything about the computer vision model
itself. We argue that because we can’t check the accuracy of the computer vision model without
annotating some observations by hand anyway, this resolves the two tensions above. We use the
same observations we would have used to assess accuracy to instead debias our estimator and
regain desirable statistical properties. That is, debiasing should become a standard part of the
broader social science framework for responsible use of AI tools along with other elements of
research design and validation (Nelson, 2020; Nelson et al., 2021; Egami et al., 2022; Grimmer,
Roberts and Stewart, 2022).

In this paper, we will provide a brief introduction to how social scientists are currently using
computer vision. We then provide a brief introduction to DSL and show why it is needed in
current social science settings. We then demonstrate how to apply DSL through an analysis
of three different computer vision applications in the social sciences where predicted variables
play different roles. While the paper is primarily concerned with the principled use of computer
vision in social science, we emphasize in the conclusion that the techniques we describe are
substantially more general and can be used in a broad array of cases.

2 Computer Vision in Social Science

The use of computer vision is only beginning to grow in social science, and many readers may
not be familiar with how it can be used in practice. In this section, we briefly survey the
literature in the social sciences, best practices for human annotations, and a demonstration of
how computer vision can be used in practice.
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Figure 1: Empirical literature review summary of the sample of 59 papers using
visual data annotations for social sciences applications. (Left) The number of individual
data points in each paper plotted on a log-scale. The range of the dataset sizes spans several
orders of magnitude. (Right) The data source for the primary application of the 59 papers
included in our literature review. The plurality are social media data.

2.1 Current Use of Computer Vision: Empirical Literature Review

We collected a sample of 59 papers using computer vision techniques from across the social
sciences and released in the last 20 years.2 The papers are published in the venues of a variety
of fields including political science (14 papers), sociology (4 papers), communications (7 papers),
and generalist journals (15 papers). Still more (19 papers) appear in conferences, as working
papers, or as chapters in edited volumes.3 While a sizable number of papers, we note that this
is substantially less than the 88 text-analysis papers published in the top 10 political science
journals reviewed by Egami et al. (2024b) covering the period 2015–2022.

While the papers are predominantly about still images (43 papers; 73%), there is a growing
use of video as well (16 papers; 27%). These visual data come from a wide range of sources,
the plurality of which are social media with newspapers, magazines, and television comprising
another major fraction (see Figure 1, right). Within the twenty-five papers that utilized social
media data, the sites used were (in order of prevalence) Instagram, Twitter, Weibo, Facebook,
Reddit, and Whatsapp. This reflects the increasingly visual nature of social media content. The
content of the studies themselves cast a wide net of social science topics including politicians
and political groups (17 papers), online behavior (16 papers), protests (11 papers), journalism
(6 papers), human geography (5 papers), elections (2 papers), and other assorted topics (2
papers).

Many of these applications demand an automated annotation approach due to the scale of
the data involved (see Figure 1, left) which ranges from a few hundred to well over a hundred

2We gathered papers cited by several reviews/applications (Cantú, 2019; Webb Williams, Casas and Wilker-
son, 2020; Joo and Steinert-Threlkeld, 2022; Girbau et al., 2024; Zhang, Borch and Pardo-Guerra, 2023) and also
those returned by a Google Scholar with the search term “images”, “videos”, or “computer vision” that were
published after 2006. Almost certainly, though, this omits a number of papers. Notably, we did not attempt to
exhaustively cover the social science work published in peer-reviewed computer science conference proceedings,
although we do include working papers, book chapters, and conference papers that we could find.

3If papers had more than one application, we code it as the application the paper spent more time/space
dissecting. For downstream analysis, we chose the most “advanced” statistical tool used in the paper (e.g., if the
paper presented descriptive statistics and regression analysis, the paper was labeled as presenting a regression
analysis).
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million units.4 The median size is 25,000 images which makes an automated approach ap-
pealing. As with most social science applications, these papers are predominantly interested in
characterizing the ‘haystack’, i.e., using annotated images and videos as variables in downstream
analyses (Hopkins and King, 2010; Egami et al., 2024a), rather than annotations of each indi-
vidual image/video themselves. These annotations are summarized in a variety of downstream
analyses including correlations, clustering, and regressions. In about half the cases, the annota-
tions are either the outcome in a downstream regression (13 papers) or the independent variable
in a downstream regression (15 papers). The remaining half are also ‘haystack’ type questions
either estimating prevalence (14 papers), performing correlations (11 papers), or other similar
analyses (6 papers). Unlike in computer science, where the goal is often to predict the most
accurate label for a particular image, social scientists’ goal is near-universally to characterize a
sample or population as accurately as possible.

When these downstream analyses are done using predicted annotations rather than ’gold-
standard’ annotations, the statistical properties of them have no guarantees. Only 10 papers
that we examined (17%) annotated all their data with human experts. The majority (83%)
used a combination of computer vision model predictions trained on human coding (33 papers)
or used fully automated computer vision model predictions (16 papers). Without additional
correction, those 49 papers would need to assume perfect accuracy in their computer vision
models to have statistical guarantees—an unlikely assumption to hold.

2.2 Producing Annotations at Scale

To prove statistical guarantees about downstream ‘haystack’ analyses, it is necessary to have
a notion of the quantity that you want to recover (Lundberg, Johnson and Stewart, 2021).
For our purposes, the ideal procedure is to have some expert annotate each data point and
then run the downstream analysis (generally a regression) on those annotations. The result of
this downstream analysis with complete expert annotation of all data points is the quantity
that DSL approximates. In practice, social and computer scientists have relied on human
annotators—some experts and some not—to annotate their data (Russakovsky et al., 2015;
Won, Steinert-Threlkeld and Joo, 2017). Here we will refer to the ‘expert’ annotator as the one
producing the quality of labels that we would ideally like to produce.

Annotating every data point with experts is generally cost-prohibitive, leading researchers to
adopt either scalable human or machine annotation strategies. For scalable human annotation,
researchers often use crowd-sourcing resources like Amazon Mechanical Turk, which allows
for—at most—limited training and expertise. A strategy for more complex tasks is to recruit
undergraduate or graduate research assistants who can be trained by the research team to
provide high quality data. Student workers may be more interested and directly invested in the
research itself, leading to greater attention.

For all human annotations (expert and non-expert), clear instructions are essential for defin-
ing the task. For simpler tasks, such as obtaining a single class from images, providing a website
with a definition and clear examples of positive and negative cases of a class that annotators are
tasked with labeling can be sufficient to gather high-quality data. For more complex tasks, such
as labeling multiple classes in video data, in addition to websites that provide clear definitions

4In some cases, n was estimated to the closest order of magnitude based on data provided by the paper, and
NA was used if the paper did not provide dataset size and it was impossible to infer. Moreover, training data
was not considered as part of the dataset size.
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for positive and negative cases of the different classes, supervisors should provide in-person or
virtual training for annotators. Throughout the annotation process, having a system to monitor
and audit annotations can also improve the accuracy of the annotations. If supervisors observe
certain aspects of the data collection that are not working, they should pivot their approach,
and retrain annotators or hire new annotators if needed. Oversight can prevent wholesale
re-annotation of data that are unreliable and of poor quality. The challenge of labeling with
humans is that the cost of scaling to large collections of images is always going to be challenging.
Even if there is the budget and supply to hire endless armies of annotators, oversight becomes
more challenging as the group grows.

Computer vision provides a powerful toolkit for scaling visual annotations to arbitrarily large
datasets (Webb Williams, Casas and Wilkerson, 2020; Joo, Bucy and Seidel, 2019). There are
broadly two flavors of approaches: the classical supervised learning pipeline where a classifier is
trained to perform a specified task and the few/zero-shot approach where a pretrained model
learns the task from very limited cues. The supervised approach involves taking some human
annotations to teach a machine learning algorithm—generally a convolutional neural network
(CNN)—how to perform a specific task (Webb Williams, Casas and Wilkerson, 2020; Tarr,
Hwang and Imai, 2023). The challenge for social scientists is that these models often require
enormous training sets. With the median-size image dataset (to this point at least) being 25,000
images, training a CNN is less appealing than simply human annotating all the images.

Given the high-cost of human annotation (expert or not), it is not surprising that approaches
which do not require many annotations—such as, few- and zero-shot learning—have quickly
become popular. These methods use pre-trained models that are furnished with a handful (few-
shot) or no (zero-shot) labeled examples. In case of text analysis, large language models have
been shown to outperform crowd-sourced workers (Gilardi, Alizadeh and Kubli, 2023; Ziems
et al., 2024; Do, Étienne Ollion and Shen, 2024) creating optimism that off-the-shelf tools might
be able to deliver highly accurate annotations with little to no new human annotation. Multi-
modal large language models, such as OpenAI’s GPT-4o, can create open-ended descriptions of
images and answer questions (which can be coding tasks). For example, in Figure 2 (top left)
contains an example of an open-ended description of a political images. The remaining three
components of Figure 2 show different tasks performed on the same image including answering
a text-based question about whether the image contains a protest and two variants of object
detection.

When the annotation task matches well with prior tasks in computer vision (e.g., object
detection or face detection), these automated systems will perform quite well without further
guidance. When the task is more subtle, high-performance can often still be achieved by provid-
ing a very small number of examples using few-shot learning. Returning to our example from
Casas and Webb Williams (2019), the authors labeled images attached to tweets on a scale of
1–10 based on the emotion they evoke. This task is not-easily replicated by an automated sys-
tem without any guidance. However, by providing GPT-4o with only 100 images, we generated
annotations that produce very similar results in the downstream analysis (see Figure 3).5

While this is a promising proof of concept, it is not a panacea. We only know the system

5Here and throughout the paper we slightly deviate from the regression specification in Casas and
Webb Williams (2019). We use the same variables but instead of a negative-binomial regression we use a
linear regression with a logged outcome. As in their paper, the regression results omit some of the observed
controls. Rather than standardize the coefficients (as they do) we divide the 0–10 scaled variables by 10 so that
all independent variables range from 0 to 1. See appendix for the full specification.
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Figure 2: Example annotations from pre-trained computer vision systems. (Top Left)
A response from GPT-4o describing an image. (Top Right) A specific coding task posed as a
question with an image, demonstrating how multi-modal large language models can be used
to perform custom coding tasks. The model is deciding what a ‘protest’ is based on it’s own
world model rather than researcher-coded images (as would be the case in classical supervised
learning). (Bottom Left/Right) Two variants of pre-trained object detection systems on the
protest image (OpenAI et al., 2024; Wang et al., 2024; Lyu et al., 2022). Images courtesy of
the Library of Congress (Public Domain).
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is relatively accurate because we have the human-annotated data to compare against. Also,
because the system is not perfectly accurate, there are discrepancies (notably in the emotion
variables). While these particular discrepancies may not seem highly empirically relevant, as
the sample size gets larger, the uncertainty estimates will shrink leading to ever more confident,
but wrong, answers.

3 Design-based Supervised Learning

Design-based Supervised Learning (DSL) is a general framework for using predicted variables
in downstream analysis that was developed by Egami et al. (2024a) and extended in Egami
et al. (2024b). DSL builds on the doubly-robust estimation framework of Robins and Rotnitzky
(1995) and Chernozhukov et al. (2018) to combine a set of expert annotations with predicted
annotations in a way that retains desirable statistical properties.

In this section, we briefly review the terminology and intuition behind DSL, provide simu-
lations to show why it is necessary, and then briefly discuss related work and alternatives.

3.1 Overview

DSL merges the complementary strengths of two annotation approaches: expert annotations
are higher quality, but expensive, while automated ‘prediction-based’ annotations are scalable,
but have unknown prediction errors. Using only one of them in the downstream analyses is
suboptimal: researchers who only use expert-annotated data can only annotate a small sample
of the data, while researchers who only use automated annotation methods will suffer from
unknown large biases. DSL allows users to obtain statistically valid estimates, while gaining
efficiency from modern computer vision techniques.

The basic steps of the proposed DSL can be summarized as follows.

Design-based Supervised Learning Estimator (DSL)

Step 1: Produce automated ‘prediction-based’ annotations (called “surrogates”) for all
images.

Step 2: Sample a subset of images for expert coding (called “expert annotations”).

Step 3: Combine expert annotations and surrogates in the DSL regression.

Importantly, the first two steps are the same as what scholars already do when they generate
automated annotations and check their accuracy. The third step is the key part of DSL, which
we describe below. Researchers can use the software package in R, dsl, to implement the third
step in a single line of code (similar to base models like lm and glm).

3.2 Intuition

The key intuition for DSL arises from the nature of our goal. We don’t need to know the value
of the expert annotation for every data point, we simply need to be able to approximate the
downstream analyses we would conduct if we had all those expert annotations. A common
example is the average expert annotation within some defined subgroups or over time.

9



The core assumption in DSL is Design-based Sampling of Expert Annotations. From Egami
et al. (2024b),

Design-based Sampling for Expert Annotation
The probability of sampling observations for expert annotation πi is known to re-
searchers, and πi is larger than zero for every observation i.

This assumption ensures that we can reweight the sample of expert annotated observations
to look like the population using inverse probability weighting. The advantage of this design is
that as long as the researcher has the entire collection of N images that they want to annotate
available at the time annotation begins, this assumption is straightforward to guarantee by
design. Most researchers randomly sample with equal probabilities when annotating, which
corresponds to the special case where πi = 1/N for all i. The core insight of DSL is that we
can use this random sample of expert annotations to construct an estimate of the bias in the
surrogate measure and then simply adjust our estimator by removing that bias.

3.3 A Short Mathematical Introduction

To provide a quick introduction to DSL, we start with a case where the annotated visual
component (e.g., whether an image contains a protest) is the outcome variable Yi. When
researchers naively use AI automated annotation systems, they would first predict whether the
image is of a protest using a computer vision technique Ŷi and then use this predicted outcome
variable directly in downstream analyses. To give the simplest example, they might estimate
the average of Y , denoted µ, with the surrogate data as,

µ̂Surrogate =
1

N

N∑
i=1

Ŷi. (1)

Instead of using Ŷi, DSL uses the design-adjusted outcome,

Ỹi = Ŷi︸︷︷︸
Predicted
Outcome

− Ri

πi

(Ŷi − Yi),︸ ︷︷ ︸
Bias-Correction Term

(2)

where Yi is the outcome of interest coded by experts, Ri is a binary variable taking 1 if image i is
expert-coded and 0 otherwise, and πi (defined in Section 3.2) is the probability of sampling image
i for expert coding.6 When researchers use data at hand to generate predictions, they should use
cross-fitting such that separate data is used for prediction and de-biasing (Chernozhukov et al.,

6The design-adjusted outcome is equal to Ŷi when Ri = 0 and is equal to Ŷi−(Ŷi−Yi)/πi when Ri = 1. There
are two potentially counterintuitive things here. First, it might seem counter-intuitive to change the outcome
for documents where Ri = 1 since these are the cases where we observe the “correct” annotation. Second, it
might seem counter-intuitive that the design-adjusted outcomes don’t obey the ranges of the original variable.
For example, for a binary Yi, Ỹi can—and often will—be outside the range of 0–1. The key to understanding the
both is that the goal is not to correct the prediction error at each document level, but to correct the aggregate
quantity. The design-adjusted outcomes, Ỹ , are standing in collectively for both observations where R = 1 but
also all the bias correction for the observations where R = 0. This estimator has deep theoretical connections to
doubly robust estimation in the causal inference literature (Robins, Rotnitzky and Zhao, 1994; Chernozhukov
et al., 2018), and the bias-correction term is similar to the one in the augmented inverse probability weighting
estimator.
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2018; Egami et al., 2024b). In the simplest case of random sampling with equal probabilities
(π = n/N where n is the number of expert-coded documents and N is the total number of
documents), the DSL estimator simplifies to

µ̂DSL =
1

N

N∑
i=1

Ỹi =

µ̂Surrogate︷ ︸︸ ︷
1

N

N∑
i=1

Ŷi︸ ︷︷ ︸
Mean of all

Predicted Outcomes

−

Estimator of the Bias︷ ︸︸ ︷(
1

n

∑
i:Ri=1

Ŷi︸ ︷︷ ︸
Mean of

Predicted Outcomes

in Expert Data

− 1

n

∑
i:Ri=1

Yi︸ ︷︷ ︸
Mean of

Expert Outcomes

in Expert Data

)
. (3)

The main idea of DSL is to use the expert-coded data to estimate the bias of surrogate
estimator using the prediction errors in the expert-annotated data. Then all we need to do is
subtract off the bias to get a debiased estimator. To provide a concrete example, suppose we
have N = 10, 000 images and randomly sampled n = 100 for expert annotation of whether show
a protest. The first term on the right-hand side estimates the proportion of protest images (i.e.
where Yi = 1) by averaging the predicted labels in all N = 10, 000 documents (suppose it is
20%). The second and third terms on the right-hand side estimate the bias to be subtracted.
In particular, the second term estimates the proportion of protest images by averaging the
predicted labels in n = 100 expert-coded documents (suppose it is 18%), and the third term
estimates the proportion of protest images by averaging the expert-coded labels in n = 100
expert-coded documents (suppose it is 10%). Because the expert-coded data are randomly
sampled, we can estimate the bias by taking the difference between the second and third terms,
18− 10 = 8%, which we subtract from the first term. In this simple example, the DSL estimate
is 20− (18− 10) = 12%.

Variance of the DSL mean estimator is approximated by

Var (µ̂DSL) ≈
1

n
Var(Yi − Ŷi)︸ ︷︷ ︸

Variance of Errors in Expert Data

+
1

N
Var(Ŷi)︸ ︷︷ ︸

Variance in Unlabeled Data

, (4)

when N is much larger than n (as in most applications) (Angelopoulos et al., 2023).7 Because N

is large in most applications, the variance is mainly determined by the first term 1
n
Var(Yi − Ŷi).

This simple expression suggests that the variance of the DSL estimator is smaller (a) when

prediction Ŷi is accurate and close to the observed outcome Yi and (b) when the number of
expert annotations is larger. This expression can be compared to the variance of the estimator
that only uses expert annotations Var(Yi)/n. The variance of the DSL is expected to be much

smaller than this alternative estimator in most applications as Ŷi can explain variations in Y
even though not perfectly.

The same principles also work when both (or any subset of) outcome and independent
variables need to be annotated. Rather than construct a design-adjusted outcome, we estimate
the bias of the underlying moment (cross-products of X and Y in the case of linear regression)
and correct appropriately. The DSL coefficients for linear regression are formally defined as,

β̂DSL =

(
1

N

N∑
i=1

MXX
i

)−1(
1

N

N∑
i=1

MXY
i

)
(5)

7The exact variance is 1
nVar(Yi − (1− n/N)Ŷi) +

N−n
N2 Var(Ŷi).
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where

MXY
i = X̂iŶi︸︷︷︸

Predicted
Variables

− Ri

πi

(
X̂iŶi −XiYi

)
︸ ︷︷ ︸

Bias-Correction
Term

, and MXX
i = X̂iX̂

⊤
i − Ri

πi

(
X̂iX̂

⊤
i −XiX

⊤
i

)
. (6)

Note that the form for each of the moments is the same as the simple example of averages above:
the surrogate-only estimator minus the estimator for the bias in the expert-annotated data.

Here, we only provide examples with linear regression, but the DSL framework accommo-
dates a large class of downstream analyses which can be estimated using the method of moments,
including a class of generalized linear models (e.g., logistic, multinomial-logistic, Poisson, and
linear fixed-effects regression). See Egami et al. (2024b) for more details.

We have also implemented a new technique, power-tuning (described in Appendix E) which
guarantees that the DSL estimator will have a smaller asymptotic variance than the estimator
that only uses expert annotation.

3.4 Practical Guidance

When the design-based sampling assumption holds, DSL guarantees that the downstream anal-
yses are asymptotically unbiased and asymptotically Normal with a variance that can be es-
timated in closed form—even if the surrogate model is arbitrarily biased. The result is that
confidence intervals will (asymptotically) attain nominal coverage. While this is an asymptotic
property, we show below that even a couple of hundred observations is sufficient in real-world
settings.

While we refer readers interested in the technical details to Appendix B of Egami et al.
(2024b), we briefly highlight a few rules of thumb for using the method:

1. You Can Have More Than One Surrogate:
While we mostly focus on the case of a single surrogate created using generative AI, in
practice you can have many surrogates. These are all used to predict the expert-annotation
so more (non-redundant) predictions can improve accruacy.

2. Accurate Surrogates Improve Power:
The surrogates don’t need to be accurate for the DSL properties to hold, but the more
accurate they are the more precise your estimates will be. In practice including poor
surrogates will simply widen your confidence intervals.

3. Don’t Use the Same Data to Train a Computer Vision Model and Debias:
The software package accepts the surrogate measure and the expert annotations for de-
biasing. Any training data used to create the surrogate measure should not be used for
debiasing (because overfitting in the surrogate will make it look too accurate). Researchers
can use cross-fitting (Chernozhukov et al., 2018; Egami et al., 2024b).

4. Expert Annotations Can be Sampled with Stratification:
Ideally, you want expert annotated data that includes different classes and covers the
range of your covariate space. This often means you want to perform stratified sampling
conditional on the variables in the downstream regression and the value of the surrogate
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itself (particularly when classes are very imbalanced). This is not essential, but it can
help with precision. As long as the sampling weights are known, this is okay.

5. The Required Number of Expert Annotations Does Not Increase As the Size
of the Population Increases:
Some might think the required number of expert annotations is a certain proportion (e.g.,
10%) of the total number of images they analyze, and thus, be worried that they have to
expert annotate a large number of images if the total number of images is extremely large
(e.g., millions). However, what matters to the standard errors of the DSL is the actual
number of expert annotations (not the proportion). This is similar to the standard errors
for survey sampling: regardless of whether you want to estimate the average support a
particular policy in China or in New Jersey, we get approximately the same standard
errors if we randomly sample 1000 subjects (even though 1000 people only constitute a
tiny proportion of the entire population in China). When we have an accurate predicted
surrogate, an increase in the population size (with a fixed number of expert annotations)
will actually improve our standard errors. In practice, we recommend using our proposed
data driven power analysis (illustrated in Section 4.1) to determine the number of expert
annotations.

3.5 Simulations

We address two common questions researchers have when deciding whether to utilize DSL in
their analysis:

1. “My surrogate is very accurate. Why do I still need DSL?”

2. “Human experts are prone to errors. Does DSL still work if there are errors in the expert
annotation?”

To address these questions, we run simulations using a variant of the data-generating process
in Wager and Athey (2018) to illustrate the relationship between errors in the surrogates, errors
in the expert annotations, and the performance of the surrogate-only and DSL estimators.

The first set of simulations tests how bias, root mean squared error (RMSE) and coverage
rates of confidence intervals change as we change the error rate in surrogates and number expert
annotations. Figure 4 shows the results, which helps to clarify the answer to the first question.
Even highly accurate surrogates (90%) achieve coverage well below 80%. Meanwhile, DSL
consistently attains the nominal 95% coverage. Importantly, as the surrogate is more accurate
(or the number of labeled examples grows), the RMSE for DSL improves.
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Figure 4: Effect of surrogate accuracy on bias, RMSE and coverage. Compares the
Surrogate Only (SO, in blue triangles) and DSL (in red squares) estimators over 100 simulations
for varying sizes of the expert annotated dataset. Even highly accurate surrogates can lead to
poor coverage.

Having established that bias correction is necessary, we tackle the next common question
about the accuracy of expert annotations. In the second set of simulations, we fix the surrogate
accuracy to 0.75 and introduce errors into the expert labels (accuracy 0.75, 0.8, 0.9, 0.95,
0.99, 1.0). Figure 5 shows these results. As we might expect, when expert label accuracy
is exceedingly low, coverage is also approaching the surrogate only baseline. However, mild
deviations are not too devastating to bias. When there is any amount of bias, as we include
more expert annotations with error, the coverage declines (as the estimator becomes more
certain of the biased estimate). The RMSE results suggest that as long as the accuracy exceeds
the surrogate accuracy, RMSE is better for DSL than for the surrogate only estimatorfor modest
sample sizes. In short, expert annotation accuracy is undoubtedly important, but researchers
don’t need to ensure it is absolutely perfect. Finally, if researchers want to explicitly incorporate
errors in expert annotations as additional uncertainties, they can apply the quasi-Bayesian
approach introduced in Egami et al. (2024b).

3.6 Alternative Debiasing Approaches

DSL is just one of many approaches that have been developed to address settings where a
variable in regression has been measured with error (Wang, McCormick and Leek, 2020; Fong
and Tyler, 2021; Zhang, 2021; Knox, Lucas and Cho, 2022). While many other approaches
make assumptions about the data-generating process, DSL is notable for only assuming that
researchers have control over the sampling process for expert annotations—this makes it a
particularly good fit for the rapidly changing world of generative AI.

DSL is directly built off work on doubly robust estimation (Robins, Rotnitzky and Zhao,
1994; Chernozhukov et al., 2018) to handle predicted variables. It is closely related to the
contemporaneously-developed prediction-powered inference (Angelopoulos et al., 2023; Angelopou-
los, Duchi and Zrnic, 2023), and model-assisted impact analysis (Mozer and Miratrix, N.d.).
While these other approaches focus primarily on predicted outcome variables, DSL extends to
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Figure 5: Effect of expert annotation accuracy on bias, RMSE and coverage of DSL
estimator. Hue indicates the accuracy of the gold-standard annotations. Surrogate only
(SO) baseline shows the bias, RMSE and coverage for the SO estimator. Any error in expert
annotations will eventually lead to poor coverage, but as long as experts are more accurate than
the surrogates, modest sample sizes lead to an improvement in RMSE.

cases where the predicted variables are any combination of the outcomes and independent vari-
ables. DSL also has the benefit of providing data-driven power analysis that helps users assess
how much improvement they are likely to see in their standard errors from additional expert
annotations. While DSL is our framework of choice, our argument is that suitable debiasing
should be performed for any downstream analyses using annotations created by generative AI.
We provide additional discussion in Appendix ?? about how these results are related.

4 Three Empirical Validations

To investigate the performance of DSL in practice, we conduct three empirical validations using
computer vision applications in the social sciences (overview in Table 1). In each study, we
use a complete set of human-annotated data as a benchmark. We pretend that we can only
sample a subset of images for expert coding and use computer vision models to automatically
annotate all the images. We can then assess how well DSL and other methods, which are based
on a small number of expert annotations and a large number of automated annotated images,
can recover the benchmark estimates, which use all the expert annotations. By doing so, we
can showcase the use of DSL, while testing how DSL and other methods perform when the
underlying computer vision techniques have non-random prediction errors.
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Application # of images Downstream analysis Topic Original annotations

Won, Steinert-Threlkeld,
Joo (2017)

2343 Dependent variable
Estimating the perceived
level of violence in protest
images

Both fully human
annotated and estimated
by surrogate

Casas, Webb
Williams (2019)

7943 Independent variables

Studying the emotional
reactions evoked by images
shared on Twitter in the Black
Lives Matter movement

All human annotators

Torres (2024) 688 Dependent variable
Detecting the portion of dense
crowds in images from news
articles on caravans

Surrogate only

Table 1: Summary of empirical validation studies. Note that the number of images here
is the number of images used in this analysis, which a subset of the total images in (Casas and
Webb Williams, 2019) and Won, Steinert-Threlkeld and Joo (2017) since we have removed 100
one-shot training images and non-protest images from the total set, respectively.

4.1 Won et al (2017): Annotation as Outcome

In Won, Steinert-Threlkeld and Joo (2017), the authors released the UCLA Protest Image
Dataset. This dataset contains 40,764 images shared on social media including images of protests
in Venezuela, Hong Kong, South Korea, and the United States (Women’s March and Black
Lives Matter protests). The authors included human annotations regarding a variety of visual
attributes (whether the photo includes signs, fire, police, children, flags, shouting, a group larger
than 20 individuals, and whether it was taken at night), in addition to the perceived level of
violence, for 2,343 of these protest images. We will work with this set 2,343 annotated images
for our validation study.

A natural question given this dataset is what visual features of a protest photograph are the
most predictive of a high level of perceived violence. The question of what influences audiences
to believe that a certain protest was violent or not is deeply relevant for social movements
and media outlets, since the perceived violence is shown to enhance support for law-and-order
policies (Baranauskas, 2022). For simplicity, in this first validation exercise, we treat the inde-
pendent variables as known. We predict the outcome variable—the continuous level of perceived
violence—using a multi-task convolutional neural network (ResNet) based on the proposal in
Won, Steinert-Threlkeld and Joo (2017).

We randomly sample 600 images for expert annotations. DSL combines 2343 AI annota-
tions and 600 expert annotations to perform the downstream analysis. Figure 6 (Top) shows
the average point estimate and confidence interval across 500 repeated sampling to show the
average performance across random sampling of expert coding. The ‘Benchmark’ represents
the benchmark estimate, which uses all the expert annotations. The confidence interval for the
‘Benchmark’ is the tightest confidence interval that can be achieved and still maintain correct
coverage since it is based on all of the expert-annotated data.

As expected by the theory, DSL is asymptotically unbiased and so the DSL confidence
intervals are all centered at the same place as the benchmark point estimate. The confidence
intervals are slightly wider than the Benchmark even though DSL uses only a fraction of the
data. Of course in the real-world, DSL is run once (e.g. as shown in Appendix Figure ??) and
we have no guarantee that our one confidence interval will be centered in the right place (only
that it will be on average!). In Appendix Figure ??, we show a set of fifty DSL confidence
intervals across random samples of the expert annotations to give readers a sense of what this
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Figure 6: Empirical validation study of Won et al. (2017). (Top) We report benchmark
estimates, DSL with 600 expert annotations and ResNet predictions, and estimators using the
ResNet predictions alone. To show the average performance across random sampling of expert
coding, we report the average point estimates and standard errors across 500 repeated sampling.
(Bottom) Coverage of the 95% confidence intervals for each estimator across the 500 simulations.

variation looks like.
By contrast to DSL, the estimator directly using predictions from ResNet in downstream

regression (“ResNet” in Figure 6) is biased and has a confidence interval that is too small (recall
that anything tighter than the Benchmark is necessarily misleading). Figure 6 (Bottom) shows
what this does to the coverage estimates. DSL slightly over-covers the nominal 95% level while
ResNet attains essentially 0 coverage on all variables (DSL also attains nominal coverage with
less than 400 annotations). While one variable (‘photo’) performs well with surrogate labels
only, there is no way to know that a variable would perform well ex-ante.

The DSL estimator should always have a wider confidence interval than the (often-infeasible)
Benchmark estimator that assumes all images are expert-annotated (because DSL only uses a
sample of expert annotations in combination with the surrogates). A natural comparison point
for DSL is the sub-sample estimator which only uses the sample of expert annotations (with no
surrogates).Figure 7 shows the ratio of DSL confidence interval width to sub-sample estimator.
Since all confidence intervals shown attain the nominal coverage, values below 1 are strictly
better for DSL (since it implies that the confidence intervals are smaller while attaining the
same coverage). This improvement can be thought of as what the surrogate predicted labels
are doing to improve the estimator.

In practice, the researcher must select the number of expert annotations to complete. Egami
et al. (2024a) show that you can perform a data-driven power analysis based on an initial set of
annotated observations. Figure 8 compares the projected standard error for different numbers of
expert annotations based on the first 400 and compares it with the actual standard error. These
two track very closely which allows researchers to choose the number of expert annotations on
the basis of what level of precision they need to attain to answer their question of interest.

17



group

night

photo

Bigger gains from DSL

0.76

0.80

0.84

0.88

0.92

200 400 600 800 1000
Number of annotations

W
id

th
 o

f D
S

L 
C

I/s
ub

−
sa

m
pl

e 
C

I

Ratio between DSL CI and sub−sample CI by number of annotations

Figure 7: Comparing the confidence interval width of the DSL and expert-
annotation-only estimators. For each of the coefficients in the Won, Steinert-Threlkeld
and Joo (2017) model, we plot the ratio of the DSL confidence interval to the confidence inter-
val of the estimator that assumes the same sub-sample of expert-annotated observations used
by DSL. The gains from DSL are largest, when the size of the expert-annotated sample is small.
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Figure 8: Validating the data-driven power analysis. The dashed line shows the projected
standard error of the DSL estimator based on randomly sampled (once) 300 expert annotations.
The solid line shows the actual standard error for different numbers of annotations (averaged
over 500 simulations). The prediction from the data-driven power analysis is highly-accurate.
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4.2 Casas and Webb Williams (2019): Annotation as IVs

As described in the introduction, Casas and Webb Williams (2019) investigate the relative
attention given to images that provoke different emotions online. In the original article, Casas
and Webb Williams (2019) manually annotated all 9,458 images for how much anger, disgust,
sadness, fear, and enthusiasm each image evoked on a scale of 0–10 using a total of 1,259
Mechanical Turk annotators. We will treat these labels as the expert annotations.8
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Figure 9: Empirical validation study of Casas and Webb Williams (2019). (Top) We
report benchmark estimates, DSL with 1200 expert annotations and GPT-4o predictions, and
estimators using the GPT-4o predictions alone. To show the average performance across random
sampling of expert coding, we report the average point estimates and standard errors across
500 repeated sampling. (Bottom) Coverage of the 95% confidence intervals for each estimator
across the 500 simulations.

Since Casas and Webb Williams (2019) did not use any computer vision techniques to gen-
erate automated annotations, we use GPT-4o with 100 example images in the context window
to automatically annotate the images. We repeatedly resample 1200 annotations to serve as
the expert annotations in DSL and plot the average point estimate and confidence interval in
Figure 9. In this example, predictions from GPT-4o are highly accurate, and as a result, esti-
mators directly using GPT-4o predictions in downstream regression have relatively small biases
across all coefficients, even though the coverage of its confidence interval for variable “disgust”

8In a real application, we would ideally like to have higher quality annotations. Driven by a concern about
outliers, Casas and Webb Williams (2019) apply an extra layer of scrutiny for the top 949 unique most-tweeted
images by having 5 people label them. Had DSL been available at the time, they could have used the MTurk
labels as the surrogates and applied a higher-quality procedure to a randomly selected sample (e.g., the multi-
label procedure they adopted).
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is essentially zero. Even though this performance is optimistic, in the real-world application, we
cannot observe the “Benchmark” estimates (unless they expert-annotate all images), so we do
not know whether we are in this “lucky” scenario where prediction errors happen to cause small
biases. In contrast, DSL has statistical guarantees: without assuming that prediction errors are
small or random, researchers can reliably use DSL, which is asymptotically unbiased, and its
confidence intervals have near nominal coverage.

4.3 Torres (2024) Annotation as Outcome

Torres (2024) presents a new unsupervised model of images, akin to a topic model for text. She
builds a ‘bag of visual words model’ which allows her to inductively find a mixed membership
over topics for each image. To demonstrate the model, she learns fifteen topic model on a
set of 688 images that accompanies news articles on the Central American migrant caravans
from October 3 to November 1, 2018. The topics discovered include ‘Border/Fence’, ‘People
Walking,’ ‘Small groups/Individuals’ and ‘Dense Crowd’ among others.

To demonstrate the power of the model, she considers how the use of images containing
dense crowds varies by the political leaning of the newspaper. She plots the average proportion
of the images that fall into the ‘dense crowd’ topic by the ideology of the media outlet (‘Right’,
‘Center-Right’, ‘Center’, ‘Center-Left’, ‘Left’). She finds that Right-leaning media sources show
dense crowds of migrants at a substantially higher rate than other media sources. This can
be re-framed as a regression where the outcome is the proportion of the image that contains a
dense-crowd.

Torres (2024) does not provide a continuous expert-coded measure, so we collect our own.9

In order to expert-code the portion of the images containing a dense crowd, we annotated each
of the 688 images by drawing a bounding box to classify dense crowds.10 We then compute the
proportion of the image that is covered by a bounding box and use this as our expert annotation.

We consider two surrogate measures: the topic model measure produced by Torres (2024)
and an off-the-shelf label produced by the Contrastive Language–Image Pre-training (CLIP)
model (Radford et al., 2021). Figure 10 shows the results. Again, DSL performs well as the
theory predicts, with the asymptotic properties of nominal coverage even holding with only 200
expert annotations.11

The Torres (2024) example involves a relatively small number of images, but it demonstrates
that DSL can be used even in an unsupervised topic model workflow. In topic models we often
assign topics with names, but that doesn’t necessarily mean that the topic captures exactly the
definition we would like it to (Grimmer, Roberts and Stewart, 2022; Ying, Montgomery and
Stewart, 2022). DSL allows us to discover a concept of interest (in this case dense crowds) while
still giving it an external, falsifiable definition. While the topic measure of dense crowds in
Torres (2024) was fairly accurate, we quickly encountered difficult conceptual questions about

9Torres (2024) includes numerous other validity checks, including showing representative images. In her
Figure 10, she compares her crowd topics to a binary human annotation of whether there is a crowd in the
image. We wanted to collect new expert annotations though to have a continuous measure that is similar to her
topic model-based measurement.

10We hired two undergraduate annotators to complete the coding task and then one of the authors checked
all the results.

11Because the total set of images here is quite small, the DSL estimates and coverage for Right leaning media
are a bit off. There are only 40 images from Right leaning sources in the entire dataset which can make the
estimators quite sensitive.
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Figure 10: Empirical validation study of Torres (2024). (Top) We report benchmark
estimates, DSL with 400 expert annotations and Topic Model predictions, and two estimators
directly using automated annotations (“Topic Model” and “CLIP”). To show the average
performance across random sampling of expert coding, we report the average point estimates
and standard errors across 500 repeated sampling. (Bottom) Coverage of the confidence intervals
for each estimator across the 500 simulations.

what was and was not a dense crowd—e.g. is the audience at a Trump rally a dense crowd? sort
of, but it isn’t a dense crowd of migrants the relevant point for this study. By annotating the
images ourselves we were forced to take positions on these issues, providing an added benefit to
the DSL workflow. Figure 11 highlights some of the differences between our expert coding and
the Torres (2024) bag-of-visual-words topic model.

5 Conclusion

At the time of writing, the computer vision capabilities of generative AI models are rapidly
improving. Multimodal large language models answer ever more complex questions about im-
ages with high accuracy, opening the door to more complex annotation schemes. This article is
motivated by a core tension in how these generative AI tools interact with social science. The
models often perform the tasks we want to do well, but we can’t know for sure until we have
checked them on a random sample—nullifying the promise of a model that completes our task
without expert annotation. Even if the performance is shown to be strong, predicting one of
our variables can cause us to lose the statistical guarantees of our downstream analysis. DSL
provides a way to use that expert-annotated sample to recover those statistical guarantees.

DSL makes no assumptions about the quality of the surrogate measure and requires only
that we choose units to expert code by a sampling scheme with known (non-zero) weights. This
is an assumption that, in most research projects, can be guaranteed by design. The major
limitation of DSL is that an expert must annotate a portion of the data, but this can often be
as small as a few hundred. The precision that can be gained from additional annotations is
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Figure 11: Example Differences Between the Torres (2024) Topic Measure and Our
Gold Standard (Top Left/Right) The topic model scores both these images as being approxi-
mately 75% dense crowd whereas our annotation scheme did not mark any. (Bottom Left) The
topic model scores this image as having less than 1% crowd, but our bounding boxes (depicted
in red) cover almost 80% of the image. (Bottom Right) The topic model assigns this about 3%
to the dense crowd topic, but our bounding boxes cover just over 75% of the image. Credit
images: Daniel A. Hernandez/U.S. Air Force (top left), Fernando Vergara/AP (top right), AFP
via Getty Images (bottom left), Nick Oza/USA Today (bottom right)
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easily estimated using a data-driven power analysis. This process of annotation can also be a
great way for the researcher to get more in touch with data—opening up difficult and important
questions about how the latent concept is defined.

Most importantly of all, the properties of DSL do not depend on how the surrogate is
created. As new generative AI tools are developed, we don’t need to create new methods
for downstream analyses—if the annotations are getting more accurate, our analyses will keep
benefiting. Perhaps more strikingly, in being agnostic to the properties of how the surrogate is
created, DSL can be applied to a much wider range of settings than just computer vision. Egami
et al. (2024a) focus on the use of generative AI for text analysis and Angelopoulos et al. (2023)
provide machine learning examples from proteomics to ecology. Our technique is applicable to
most settings that involve missing (or mis-measured) data, a mechanism for prediction, and a
way to obtain a higher-quality measurement of a randomly selected sample of observations. As
machine learning and AI continue to grow, these settings will become ever more abundant!

Data and Code Availability Statement: We make our data and code available at Data-
verse at https://doi.org/10.7910/DVN/D9UGOV. Some of the images we use cannot be shared
publicly but we provide derivative products necessary to replicate our analyses and indicate
whom to contact to request the original images.
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A Model Details

A.1 Surrogate Model specifications

A.1.1 Won et al (2017) application

In this application, we have used the 50-layer ResNet model trained by (Won, Steinert-Threlkeld
and Joo, 2017), as a surrogate for the percieved level of violence in the images. This multi-task
convolutional neural network was trained on a separate dataset of human annotations on the
level of violence of images. Their model architecture consists of 50 convolutional layers with
batch normalization and ReLU layers. The authors use mean squared error to train violence
dimension.

A.1.2 Casas et al (2019) application

We use GPT-4o in order to generate surrogates for the emotional reactions elicited in the images
shared on Twitter OpenAI et al. (2024). We sample 100 images for few-shot training from the
human annotations in Casas and Webb Williams (2019) where those 100 images were not used
in the final analysis. We used GPT-4o in the 2024-05-13 deployment version. Due to context
length constraints, for each query, we randomly sample 20 pairs from the few-shot training set
and feed it as context learning. In the style of Maaz et al. (2024), we set the system prompt as:

∗Graduate Student in Sociology, Princeton University
†Graduate Student in Computer Science, Princeton University.
‡AI Research Scientist, Intel Labs.
§Senior Research Specialist, Princeton University.
¶Corresponding Author. Assistant Professor, Department of Political Science, Columbia University. Email:

naoki.egami@columbia.edu. URL: https://naokiegami.com.
‖Corresponding Author. Associate Professor, Department of Sociology and the Office of Population Research,

Princeton University. Email: bms4@princeton.edu. URL: https://brandonstewart.org.

1

mailto:naoki.egami@columbia.edu
https://naokiegami.com
mailto:bms4@princeton.edu
https://brandonstewart.org


You are an intelligent chatbot designed to predict the human emotion evoked

when looking at an image. Your task is to look at an image and predict the type

and intensity of the human emotion it evokes.:

------

INSTRUCTIONS:

- Closely investigate the image.

- Explain what kind of emotion you will evoke from the given image.

And set the user prompt as :

Please look at the image and indicate the extent to which an image evoked each

of the five emotions: Anger, Enthusiasm, Fear, Sadness, and Disgust

Provide your amount of emotion only as an integer value between 0 and 10,

with 10 indicating the most evoked. Please generate the response in the form of

a Python dictionary string with keys being the emotion.

DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python

dictionary string. For example, your response should look like this:

{’anger’: 5.0, ’enthusiasm’: 4.5, ’fear’: 5, ’sadness’: 0.5, ’disgust’:10.0}.

A.1.3 Torres (2024) application

We use the Transformers implementation of CLIP Radford et al. (2021), calculating the score
between the image and the text “a photo of a crowd”, where higher score means that the image
is close to the text. Since CLIP is highly successful with image/text matching Barraco et al.
(2022), we are using the CLIP-generated score as a surrogate for the proportion of the topic
“crowd” in a given image (similarly to Torres (2024)’s conceptualization). As CLIP-generated
scores are unbounded, we rescale them between 0 and 1 in order to match the original paper
(using f(x) = x−min(x)

max(x)−min(x)
).

A.2 Downstream regression specifications

A.2.1 Won et al (2017) application

Unlike the two other applications, this analysis is not in the results published by (Won, Steinert-
Threlkeld and Joo, 2017), however, they represent a simple social scientific question that could
be derived from their data. For this application, we ran a linear robust model with the follow-
ing formula violence ∼ sign + photo + fire + police + children + group 20 + flag

+ night + shouting. Here, violence represents the perceived level of violence in a given im-
age, which is both human annotated by (Won, Steinert-Threlkeld and Joo, 2017), and predicted
by the author’s application of ResNet. The standard error type utilized here is “HC0”.

A.2.2 Casas et al (2019) application

The analysis of interest here is the robust linear model given by the following formula log(retweet n+1)

∼ followers count + friends count + prev tweets + time control + protest + symbol

+ anger + fear + disgust + sadness + enthusiasm. The standard error type utilized here
is “HC0”. It is important to note that here we are taking the log(x+1) of out outcome variable
of interest (number of retweets) and then applying a linear model (in opposition to (Casas and

2



Webb Williams, 2019)’s application, where they use a negative binomial model. Other than
that, the regression ran and the variables controlled for are identical. The only variables being
predicted by the GPT4-o surrogate in the analysis are the emotional reactions, namely anger,

fear, disgust, sadness, enthusiasm.

A.2.3 Torres (2024) application

The analysis performed here is a robust linear model with the formula crow proportion

∼ political leaning -1, where crow proportion is predicted using CLIP scores, (Torres,
2024)’s bag of visual words model, or given by our ground truth human annotations. Moreover,
political leaning is the categorization made by (Torres, 2024) of the political leaning of the
news outlet. The standard error type utilized here is “HC0”.
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Figure 1: This shows the results of applying DSL once (rather than averaging over many results)
to the Won, Steinert-Threlkeld and Joo (2017) application.

B Additional Results

Figures 1–3 contain additional results from the three empirical validations as described in their
captions.

Figure 1 shows one application of DSL on the Won et al (2017) empirical validation instead of
the avarage of the estimates (in this paper, horizontal estimates represent the result of avaraging
500 applications of DSL, whereas vertical estimates represent the result of applying the method
once). We see that the DSL estimate tracks the Benchmark in all three coefficients while the
ResNet surrogate underestimates, overestimates, and correctly estimates (overestimating the
width of the confidence intervals) respectively for the coefficients showed.

Figure 2 shows the ratio between the DSL confidence intervals and the Oracle (Benchmark)
confidence intervals in the Torres (2024) empirical validation for increasing number of labeled
annotations used. Above, we see that DSL approximates the ground truth confidence interval
width as we add more annotations. Below, we see that as we use more annotations, the marginal
effect of using DSL in juxtapoisition to using the labeled annotations only decreases.

Figure 3 shows 50 applications of DSL in comparison to surrogate-only (ResNet), the same
sub-sample of labeled annotations used for DSL, and the Benchmark (all labeled annotations)
for the variable “police” in the Won et al (2017) empirical validation. We see the trend that
DSL approximates the Benchmark better than the sub-sample alone or the surrogate (ResNet)
alone.

Table 1 shows the effect of using additional labeled examples to fine-tune a model (and thus
perhaps improving predictive capacity of the surrogate) versus using those additional labeled
examples directly into DSL for the Casas et al (2019) empirical validation. We have mantained
the total number of labeled examples used in the whole process (2000) constant while varying
their use. We see that we get the smallest confidence intervals for all the variables in this
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Figure 2: Confidence intervals in Torres (2024) by comparison to the oracle confidence interval
and the sub-sample only confidence interval. Over 500 iterations.
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Figure 3: Results of 50 simulations for the variable ‘police’ in the Won et al empirical validation,
for the model using DSL, with the labeled sub-sample observations without using DSL, and
compared to ResNet (no labeled observations) and the benchmark (all 2343 labeled observations)
applying with 200 labeled observations. In this plot, confidence intervals had their transparency
increased if they did not contain the Benchmark estimate.
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Type 1000DSL/1000FT 1500DSL/500FT 1900DSL/100FT
average CI width (protest) 0.16 0.13 0.13
average CI width (symbol) 0.21 0.18 0.17
average CI width (anger) 0.66 0.47 0.46
average CI width (fear) 0.70 0.56 0.51

average CI width (disgust) 0.60 0.45 0.43
average CI width (sadness) 0.47 0.34 0.31

average CI width (enthusiasm) 0.42 0.30 0.29
surrogate accuracy (anger) 0.63 0.49 0.70
surrogate accuracy (fear) 0.42 0.41 0.46

surrogate accuracy (disgust) 0.63 0.62 0.68
surrogate accuracy (sadness) 0.63 0.59 0.68

surrogate accuracy (enthusiasm) 0.55 0.72 0.63

Table 1: Results of experiment of maintaining 2000 labeled annotations constant in the Casas et
al (2019), and testing whether it is more effective to use them for fine-tuning (FT) to generate
more accurate surrogate annotations or to use them directly in DSL.

empirical validation when we minimize the amount of fine-tuning for GPT4-o and maximize
the number of labeled examples into DSL (1900 benchmark annotations used for DSL, and 100
benchmark annotations used for fine-tuning). We also see that the surrogate accuracy does not
increase linearly with adding more labeled annotations.

C Additional Details on Simulation

C.0.1 Simulation setup

For generating the simulations for Figures ?? and ?? which show the effect of surrogate accuracy
on bias, RMSE, and coverage, and the effect of expert annotation accuracy on bias, RMSE, and
coverage of DSL estimator (respectively), we have generated synthetic data. This data was
generated analogously1 to Wager and Athey (2018), with n = 5000 (‘images’, in our case),
where Y was a smooth function supported on the first two features such as in Equation 1 below,
however, we have also added normal error and a linear term of the other covariates.

We ran this simulation with 100 ‘labeled’ examples and 10 covariates2 X1, . . . , X10 and intro-
duced the prediction error in the surrogate for X2. Note our covariates X1, . . .X10 are initially
drawn from a uniform distribution between 0 and 1, and then X2 is transformed into a binary
variable (1 if greater than 0.8, and 0 otherwise). Y , on the other hand, is generated by incorpo-
rating non-linear transformations of X1 and X2 and added linear contributions from additional
covariates, alongside random normal noise. The data generating process of the outcome Y is

1To see the simulation this was based on, go to equation (28), p. 1238, in Wager and Athey (2018).
2The number of covariates used in the data generating process is 10, but we consider cases when we cannot

observe all of them. We only use the first three in the downstream analysis. This shows that we do not need to
assume the correct specification of the downstream model.
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given by

Y =

(
1 +

1

(1 + e−20·(X1−1/3)

)
·
(
1 +

1

1 + e−20·(X2−1/3)

)
+

∑
i∈{4,5,6,7,8,9,10}

Xi + ε (1)

where ε ∼ N(0, 1).
Then, a surrogate for X2 is created with specified accuracy (denoted q acc in the figures) by

probabilistically altering the original X2 values. Then, random binary errors in the Benchmark
labeled examples are introduced to simulate expert annotation errors. For the downstream
analysis showed in the figures, we are fitting the following model: Y ∼ X1 +X2 +X3 where X2

is the binary surrogate.

C.0.2 Diagnosands

Denoting the simulation iteration as i ∈ N and the target coefficient as βEstim., the diagnosands
in our simulations are calculated as follows:

• Mean Absolute Bias: the average absolute difference between the estimate and true
parameter value ( 1

N

∑N
i abs(βDSL,i−β∗), where i denotes simulation iteration, N denotes

the number of simulations and β∗ = 1
N

∑N
i βoracle,i)

• Root Mean Squared Error (RMSE): the average RMSE

• Coverage of 95% Intervals: the proportion of simulations for which the true parameter
value is in the confidence interval provided by the estimator

D Connection to Literature

Theoretically, our paper is most closely related to two recent papers that similarly build on the
literature on doubly robust methods. Prediction-powered inference Angelopoulos et al. (2023)
provides a similar framework to ours, but they have primarily focused on settings where the
outcome variable is predicted while providing both asymptotic and non-asymptotic confidence
intervals. Mozer and Miratrix (N.d.) focus on settings where the predicted outcome variable is
used within randomized experiments. Methodologically, our paper extends these previous results
in three ways. First, while these papers only cover cases of text-based outcome variables, we
cover cases where any subset of the outcome and independent variables are text-based. Second,
we develop a data-driven power analysis to help users determine the required number of expert
annotations. Third, we derive DSL estimators for a much wider range of downstream analyses
popular in the social sciences, including linear fixed effects regression and the instrumental vari-
able method. In addition, we make practical contributions by providing new statistical software
and clarifying detailed guides using two empirical applications. While they all share the same
methodological foundation, each paper contains its own unique contributions tailored to differ-
ent applications they focus on: our paper focusing on the social sciences, prediction-powered
inference focusing mostly on the natural sciences, and model-assisted impact analysis focusing
on education and randomized experiments. Given the wide applicability of the shared method-
ological foundation, we expect more exciting methodological developments that address various
application-specific problems. Katsumata and Yamauchi (2023) also develop a framework for
using predicted variables while building on a different framework of control variates (Chen and
Chen, 2000).
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E Power-Tuning

Following Angelopoulos, Duchi and Zrnic (2023), we implement the power-tuning that guaran-
tees that the DSL estimator has a smaller asymptotic variance than the estimator that only
uses expert annotations.

Using the simplified notation (see more full results in Egami et al. (2024)), we consider the
following general moment condition.

mDSL(Di, D̂i, Ri; β, π) := m(D̂i; β)−
Ri

πi

(
m(D̂i; β)−m(Di; β)

)
(2)

where Di is a vector of observed variables, D̂i is a vector of predicted variables, Ri is an indicator
binary whether a unit is sampled for expert annotations, and πi is the known probability of
being sampled for expert annotations. Note that some of D̂i can be observed and might not
need to be predicted.

The power-tuning version (Angelopoulos, Duchi and Zrnic, 2023) has an additional tuning
parameter λ.

mDSL,λ(Di, D̂i, Ri; β, π) :=
Ri

πi

m(Di; β) + λ

(
1− Ri

πi

)
m(D̂i; β) (3)

The asymptotic variance of this estimator is

λ2 × SV P1SV − λ× SV P2SV + P3 (4)

where

SV = E

(
∂m(Di; β

∗)

∂β

)−1

P1 = E
(

1

πi

m(D̂i; β
∗)m(D̂i; β

∗)⊤
)
− E

(
m(D̂i; β

∗)m(D̂i; β
∗)⊤
)

P2 = E
(

1

πi

m(D̂i; β
∗)m(Di; β

∗)⊤
)
− E

(
m(D̂i; β

∗)m(Di; β
∗)⊤
)

+E
(

1

πi

m(Di; β
∗)m(D̂i; β

∗)⊤
)
− E

(
m(Di; β

∗)m(D̂i; β
∗)⊤
)

P3 = E
(

1

πi

m(Di; β
∗)m(Di; β

∗)⊤
)
.

We tune λ to minimize the trace of the asymptotic variance.

λ∗ =
Tr{SV P2SV }
2Tr{SV P1SV }

. (5)
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