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A Model Details

A.1 Surrogate Model specifications

A.1.1 Won et al (2017) application

In this application, we have used the 50-layer ResNet model trained by (Won, Steinert-Threlkeld
and Joo, 2017), as a surrogate for the percieved level of violence in the images. This multi-task
convolutional neural network was trained on a separate dataset of human annotations on the
level of violence of images. Their model architecture consists of 50 convolutional layers with
batch normalization and ReLU layers. The authors use mean squared error to train violence
dimension.

A.1.2 Casas et al (2019) application

We use GPT-4o in order to generate surrogates for the emotional reactions elicited in the images
shared on Twitter OpenAI et al. (2024). We sample 100 images for few-shot training from the
human annotations in Casas and Webb Williams (2019) where those 100 images were not used
in the final analysis. We used GPT-4o in the 2024-05-13 deployment version. Due to context
length constraints, for each query, we randomly sample 20 pairs from the few-shot training set
and feed it as context learning. In the style of Maaz et al. (2024), we set the system prompt as:
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You are an intelligent chatbot designed to predict the human emotion evoked

when looking at an image. Your task is to look at an image and predict the type

and intensity of the human emotion it evokes.:

------

INSTRUCTIONS:

- Closely investigate the image.

- Explain what kind of emotion you will evoke from the given image.

And set the user prompt as :

Please look at the image and indicate the extent to which an image evoked each

of the five emotions: Anger, Enthusiasm, Fear, Sadness, and Disgust

Provide your amount of emotion only as an integer value between 0 and 10,

with 10 indicating the most evoked. Please generate the response in the form of

a Python dictionary string with keys being the emotion.

DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python

dictionary string. For example, your response should look like this:

{’anger’: 5.0, ’enthusiasm’: 4.5, ’fear’: 5, ’sadness’: 0.5, ’disgust’:10.0}.

A.1.3 Torres (2024) application

We use the Transformers implementation of CLIP Radford et al. (2021), calculating the score
between the image and the text “a photo of a crowd”, where higher score means that the image
is close to the text. Since CLIP is highly successful with image/text matching Barraco et al.
(2022), we are using the CLIP-generated score as a surrogate for the proportion of the topic
“crowd” in a given image (similarly to Torres (2024)’s conceptualization). As CLIP-generated
scores are unbounded, we rescale them between 0 and 1 in order to match the original paper
(using f(x) = x−min(x)

max(x)−min(x)
).

A.2 Downstream regression specifications

A.2.1 Won et al (2017) application

Unlike the two other applications, this analysis is not in the results published by (Won, Steinert-
Threlkeld and Joo, 2017), however, they represent a simple social scientific question that could
be derived from their data. For this application, we ran a linear robust model with the follow-
ing formula violence ∼ sign + photo + fire + police + children + group 20 + flag

+ night + shouting. Here, violence represents the perceived level of violence in a given im-
age, which is both human annotated by (Won, Steinert-Threlkeld and Joo, 2017), and predicted
by the author’s application of ResNet. The standard error type utilized here is “HC0”.

A.2.2 Casas et al (2019) application

The analysis of interest here is the robust linear model given by the following formula log(retweet n+1)

∼ followers count + friends count + prev tweets + time control + protest + symbol

+ anger + fear + disgust + sadness + enthusiasm. The standard error type utilized here
is “HC0”. It is important to note that here we are taking the log(x+1) of out outcome variable
of interest (number of retweets) and then applying a linear model (in opposition to (Casas and
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Webb Williams, 2019)’s application, where they use a negative binomial model. Other than
that, the regression ran and the variables controlled for are identical. The only variables being
predicted by the GPT4-o surrogate in the analysis are the emotional reactions, namely anger,

fear, disgust, sadness, enthusiasm.

A.2.3 Torres (2024) application

The analysis performed here is a robust linear model with the formula crow proportion

∼ political leaning -1, where crow proportion is predicted using CLIP scores, (Torres,
2024)’s bag of visual words model, or given by our ground truth human annotations. Moreover,
political leaning is the categorization made by (Torres, 2024) of the political leaning of the
news outlet. The standard error type utilized here is “HC0”.

3



DSL

ResNet

Benchmark

−0.04

0.00

0.04

0.08

group>20 night photo
Independent variables

E
st

im
at

es

Estimates and confidence intervals for predictors of perceived level of violence

Figure 1: This shows the results of applying DSL once (rather than averaging over many results)
to the Won, Steinert-Threlkeld and Joo (2017) application.

B Additional Results

Figures 1–3 contain additional results from the three empirical validations as described in their
captions.

Figure 1 shows one application of DSL on the Won et al (2017) empirical validation instead of
the avarage of the estimates (in this paper, horizontal estimates represent the result of avaraging
500 applications of DSL, whereas vertical estimates represent the result of applying the method
once). We see that the DSL estimate tracks the Benchmark in all three coefficients while the
ResNet surrogate underestimates, overestimates, and correctly estimates (overestimating the
width of the confidence intervals) respectively for the coefficients showed.

Figure 2 shows the ratio between the DSL confidence intervals and the Oracle (Benchmark)
confidence intervals in the Torres (2024) empirical validation for increasing number of labeled
annotations used. Above, we see that DSL approximates the ground truth confidence interval
width as we add more annotations. Below, we see that as we use more annotations, the marginal
effect of using DSL in juxtapoisition to using the labeled annotations only decreases.

Figure 3 shows 50 applications of DSL in comparison to surrogate-only (ResNet), the same
sub-sample of labeled annotations used for DSL, and the Benchmark (all labeled annotations)
for the variable “police” in the Won et al (2017) empirical validation. We see the trend that
DSL approximates the Benchmark better than the sub-sample alone or the surrogate (ResNet)
alone.

Table 1 shows the effect of using additional labeled examples to fine-tune a model (and thus
perhaps improving predictive capacity of the surrogate) versus using those additional labeled
examples directly into DSL for the Casas et al (2019) empirical validation. We have mantained
the total number of labeled examples used in the whole process (2000) constant while varying
their use. We see that we get the smallest confidence intervals for all the variables in this
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Figure 2: Confidence intervals in Torres (2024) by comparison to the oracle confidence interval
and the sub-sample only confidence interval. Over 500 iterations.
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Figure 3: Results of 50 simulations for the variable ‘police’ in the Won et al empirical validation,
for the model using DSL, with the labeled sub-sample observations without using DSL, and
compared to ResNet (no labeled observations) and the benchmark (all 2343 labeled observations)
applying with 200 labeled observations. In this plot, confidence intervals had their transparency
increased if they did not contain the Benchmark estimate.
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Type 1000DSL/1000FT 1500DSL/500FT 1900DSL/100FT
average CI width (protest) 0.16 0.13 0.13
average CI width (symbol) 0.21 0.18 0.17
average CI width (anger) 0.66 0.47 0.46
average CI width (fear) 0.70 0.56 0.51

average CI width (disgust) 0.60 0.45 0.43
average CI width (sadness) 0.47 0.34 0.31

average CI width (enthusiasm) 0.42 0.30 0.29
surrogate accuracy (anger) 0.63 0.49 0.70
surrogate accuracy (fear) 0.42 0.41 0.46

surrogate accuracy (disgust) 0.63 0.62 0.68
surrogate accuracy (sadness) 0.63 0.59 0.68

surrogate accuracy (enthusiasm) 0.55 0.72 0.63

Table 1: Results of experiment of maintaining 2000 labeled annotations constant in the Casas et
al (2019), and testing whether it is more effective to use them for fine-tuning (FT) to generate
more accurate surrogate annotations or to use them directly in DSL.

empirical validation when we minimize the amount of fine-tuning for GPT4-o and maximize
the number of labeled examples into DSL (1900 benchmark annotations used for DSL, and 100
benchmark annotations used for fine-tuning). We also see that the surrogate accuracy does not
increase linearly with adding more labeled annotations.

C Additional Details on Simulation

C.0.1 Simulation setup

For generating the simulations for Figures ?? and ?? which show the effect of surrogate accuracy
on bias, RMSE, and coverage, and the effect of expert annotation accuracy on bias, RMSE, and
coverage of DSL estimator (respectively), we have generated synthetic data. This data was
generated analogously1 to Wager and Athey (2018), with n = 5000 (‘images’, in our case),
where Y was a smooth function supported on the first two features such as in Equation 1 below,
however, we have also added normal error and a linear term of the other covariates.

We ran this simulation with 100 ‘labeled’ examples and 10 covariates2 X1, . . . , X10 and intro-
duced the prediction error in the surrogate for X2. Note our covariates X1, . . .X10 are initially
drawn from a uniform distribution between 0 and 1, and then X2 is transformed into a binary
variable (1 if greater than 0.8, and 0 otherwise). Y , on the other hand, is generated by incorpo-
rating non-linear transformations of X1 and X2 and added linear contributions from additional
covariates, alongside random normal noise. The data generating process of the outcome Y is

1To see the simulation this was based on, go to equation (28), p. 1238, in Wager and Athey (2018).
2The number of covariates used in the data generating process is 10, but we consider cases when we cannot

observe all of them. We only use the first three in the downstream analysis. This shows that we do not need to
assume the correct specification of the downstream model.
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given by

Y =

(
1 +

1

(1 + e−20·(X1−1/3)

)
·
(
1 +

1

1 + e−20·(X2−1/3)

)
+

∑
i∈{4,5,6,7,8,9,10}

Xi + ε (1)

where ε ∼ N(0, 1).
Then, a surrogate for X2 is created with specified accuracy (denoted q acc in the figures) by

probabilistically altering the original X2 values. Then, random binary errors in the Benchmark
labeled examples are introduced to simulate expert annotation errors. For the downstream
analysis showed in the figures, we are fitting the following model: Y ∼ X1 +X2 +X3 where X2

is the binary surrogate.

C.0.2 Diagnosands

Denoting the simulation iteration as i ∈ N and the target coefficient as βEstim., the diagnosands
in our simulations are calculated as follows:

• Mean Absolute Bias: the average absolute difference between the estimate and true
parameter value ( 1

N

∑N
i abs(βDSL,i−β∗), where i denotes simulation iteration, N denotes

the number of simulations and β∗ = 1
N

∑N
i βoracle,i)

• Root Mean Squared Error (RMSE): the average RMSE

• Coverage of 95% Intervals: the proportion of simulations for which the true parameter
value is in the confidence interval provided by the estimator

D Connection to Literature

Theoretically, our paper is most closely related to two recent papers that similarly build on the
literature on doubly robust methods. Prediction-powered inference Angelopoulos et al. (2023)
provides a similar framework to ours, but they have primarily focused on settings where the
outcome variable is predicted while providing both asymptotic and non-asymptotic confidence
intervals. Mozer and Miratrix (N.d.) focus on settings where the predicted outcome variable is
used within randomized experiments. Methodologically, our paper extends these previous results
in three ways. First, while these papers only cover cases of text-based outcome variables, we
cover cases where any subset of the outcome and independent variables are text-based. Second,
we develop a data-driven power analysis to help users determine the required number of expert
annotations. Third, we derive DSL estimators for a much wider range of downstream analyses
popular in the social sciences, including linear fixed effects regression and the instrumental vari-
able method. In addition, we make practical contributions by providing new statistical software
and clarifying detailed guides using two empirical applications. While they all share the same
methodological foundation, each paper contains its own unique contributions tailored to differ-
ent applications they focus on: our paper focusing on the social sciences, prediction-powered
inference focusing mostly on the natural sciences, and model-assisted impact analysis focusing
on education and randomized experiments. Given the wide applicability of the shared method-
ological foundation, we expect more exciting methodological developments that address various
application-specific problems. Katsumata and Yamauchi (2023) also develop a framework for
using predicted variables while building on a different framework of control variates (Chen and
Chen, 2000).
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E Power-Tuning

Following Angelopoulos, Duchi and Zrnic (2023), we implement the power-tuning that guaran-
tees that the DSL estimator has a smaller asymptotic variance than the estimator that only
uses expert annotations.

Using the simplified notation (see more full results in Egami et al. (2024)), we consider the
following general moment condition.

mDSL(Di, D̂i, Ri; β, π) := m(D̂i; β)−
Ri

πi

(
m(D̂i; β)−m(Di; β)

)
(2)

where Di is a vector of observed variables, D̂i is a vector of predicted variables, Ri is an indicator
binary whether a unit is sampled for expert annotations, and πi is the known probability of
being sampled for expert annotations. Note that some of D̂i can be observed and might not
need to be predicted.

The power-tuning version (Angelopoulos, Duchi and Zrnic, 2023) has an additional tuning
parameter λ.

mDSL,λ(Di, D̂i, Ri; β, π) :=
Ri

πi

m(Di; β) + λ

(
1− Ri

πi

)
m(D̂i; β) (3)

The asymptotic variance of this estimator is

λ2 × SV P1SV − λ× SV P2SV + P3 (4)

where

SV = E

(
∂m(Di; β

∗)

∂β

)−1

P1 = E
(

1

πi

m(D̂i; β
∗)m(D̂i; β

∗)⊤
)
− E

(
m(D̂i; β

∗)m(D̂i; β
∗)⊤
)

P2 = E
(

1

πi

m(D̂i; β
∗)m(Di; β

∗)⊤
)
− E

(
m(D̂i; β

∗)m(Di; β
∗)⊤
)

+E
(

1

πi

m(Di; β
∗)m(D̂i; β

∗)⊤
)
− E

(
m(Di; β

∗)m(D̂i; β
∗)⊤
)

P3 = E
(

1

πi

m(Di; β
∗)m(Di; β

∗)⊤
)
.

We tune λ to minimize the trace of the asymptotic variance.

λ∗ =
Tr{SV P2SV }
2Tr{SV P1SV }

. (5)
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