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Abstract

Social scientists use automated annotation methods, such as supervised machine learn-

ing and, more recently, large language models (LLMs), that can predict labels and generate

text-based variables. While such predicted text-based variables are often analyzed as if they

were observed without errors, we first show that ignoring prediction errors in the automated

annotation step leads to substantial bias and invalid confidence intervals in downstream

analyses, even if the accuracy of the automated annotations is high, e.g., above 90%. We

propose a framework of design-based supervised learning (DSL) that can provide valid statis-

tical estimates, even when predicted variables contain non-random prediction errors. DSL

employs a doubly robust procedure to combine predicted labels and a smaller number of

expert annotations. DSL allows scholars to apply advances in LLMs and natural language

processing to social science research while maintaining statistical validity. We illustrate its

general applicability using two applications where the outcome and independent variables

are text-based.

Keywords: Large Language Models, Machine Learning, Prediction Errors, Doubly Robust Estimation

∗The proposed methodology is implemented via our software R package, dsl (http://dsl.software). This

paper extends and generalizes the methods we proposed in Egami et al. (2023). We appreciate the excellent

research assistance by Songpo Yang, TaeJun Seo, and Benedikt Ströbl. We would like to thank Arthur Spirling,
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1 Introduction

Over the last decade, social scientists have developed and applied a variety of text analysis and

natural language processing methods to study a large collection of documents (Grimmer and

Stewart, 2013; Gentzkow et al., 2019). In text-as-data applications, one of the most common

tasks is text annotation (or text classification) to generate text-based variables for subsequent

statistical analyses. For example, Pan and Chen (2018) first annotate whether each online post

accuses local Chinese officials of corruption so that they can later study whether and how much

such online complaints are censored. Fowler et al. (2021) first annotate the tone of political ads

and then analyze how politicians strategically change the tone of political advertising online and

offline.

In an ideal world without any budget and time constraints, researchers, as domain experts,

might want to carefully annotate all the documents they use in their main statistical analyses.

However, this is often impossible for a large number of documents that social scientists ana-

lyze these days. To facilitate large-scale annotations, social scientists have used a variety of

supervised machine learning (ML) methods to automate this text annotation step by training

machines to mimic expert-coding (Hastie et al., 2009; Barberá et al., 2021). More recently, a

growing number of papers propose using large language models (LLMs), such as ChatGPT, to

automate text annotations by predicting text labels (e.g., Bommasani et al., 2021; Ornstein

et al., 2022; Gilardi et al., 2023; Linegar et al., 2023; Ollion et al., 2023; Pangakis et al., 2023;

Ziems et al., 2023). Given that researchers can adapt LLMs to perform a wide range of text

annotation tasks by simply changing prompts, automated LLM annotations present exciting

opportunities for the social sciences.

While text annotation is essential, it is only the first step. Social scientists are often primarily

interested in using text labels predicted by automated methods as key variables in subsequent

statistical analyses (Hopkins and King, 2010; Egami et al., 2022; Grimmer et al., 2022). In the

vast majority of current applications, researchers treat predicted text-based variables as if they

were observed without any error: they ignore prediction errors in the first step of automated

text annotation (Benoit et al., 2009; Wang et al., 2020; Fong and Tyler, 2021; Knox et al., 2022).

The natural intuition behind this common practice is that when the prediction accuracy is high

enough, the underlying automated text annotation model, whether it is an LLM or a supervised

ML model, “learned” how to label texts, and prediction errors are small enough that analysts

can ignore them.

However, we clarify that ignoring such prediction errors in the first step of text annotation,

even if the errors are small, leads to substantial bias, invalid confidence intervals, and wrong p-
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Figure 1: Overview of the Design-based Supervised Learning (DSL).

values in downstream statistical analyses of text-based variables. Biases from prediction errors

exist even when the prediction accuracy in the text classification step is extremely high, e.g.,

above 90% or even at 95%. This is because prediction errors are not random—prediction errors

are correlated with observed and unobserved variables we include in downstream analyses. In

practice, this means that substantive and statistical conclusions can easily flip if researchers

choose slightly different automated text annotation methods, as we empirically see in Section 5.

In this paper, we develop a general framework for using predicted variables in downstream

statistical analyses without suffering from bias due to prediction errors. Unlike the existing

approaches, the proposed approach, which we call design-based supervised learning (DSL), allows

researchers to obtain statistically valid estimates and standard errors, even when automated

text annotation methods have arbitrary non-random prediction errors. In practice, this means

DSL enables researchers to use any recent advances in LLMs and natural language processing

methods for automated text annotation, without worrying that downstream statistical analyses

suffer from biases and non-random prediction errors.

Methodologically speaking, DSL combines large-scale (potentially biased) automated an-

notations and a smaller number of expert annotations (see Figure 1 for an overview of the

method). In particular, DSL does it with a tailored bias-correction step building on the lit-

erature of doubly robust estimation (Robins et al., 1994; Chernozhukov et al., 2018). While

DSL provides statistically valid estimates regardless of the prediction accuracy of the underly-

2



ing automated text annotation method, DSL can reduce standard errors when the underlying

automated text annotation method becomes more accurate. Therefore, as LLMs improve over

time, DSL becomes more efficient, too.

Most importantly, DSL only requires one assumption that researchers control the process

through which documents are sampled for expert annotations. One of the most common sce-

narios is that researchers randomly sample documents for expert-coding. Researchers can also

change the sampling probability for each document based on observed variables. This assump-

tion is straightforward to guarantee by research design in many social science applications,

which gives the name, design-based supervised learning. We do not make any assumptions

about prediction errors in the underlying automated text annotation method.

Overall, DSL merges the complementary strengths of two annotation approaches: expert

annotations are higher quality but expensive, while automated text annotations are scalable

but have unknown prediction errors. Using only one of them in the main statistical analyses is

suboptimal: researchers who only use expert-coded documents will miss so many documents they

cannot expert-annotate, while researchers who only use automated text annotation methods will

suffer from unknown large biases. DSL allows users to obtain statistically valid estimates, while

gaining efficiency from automated text annotation methods.

Our proposed approach is a general-purpose method that works in a wide range of text-

as-data applications. DSL can incorporate any automated text annotation methods, including

the current and future LLMs, as well as the classical supervised ML method. DSL can be

applied to a variety of common downstream analyses scholars conduct with text-based variables:

linear, logistic, multinomial-logistic, Poisson, and linear fixed-effects regression, as well as the

estimation of category proportions and causal inference with texts.1 In Section 6, we provide

practical guides to help researchers navigate several practical choices, such as how to determine

the required number of expert annotations and what to do if expert annotations are not reliable

enough. We offer an easy-to-use R package dsl, which can implement all the methods described

in this paper with simple functions.

To concretely illustrate our proposed method, we use two empirical applications, Fowler et al.

(2021) and Pan and Chen (2018), throughout the paper. Like many text-as-data studies, both

applications first annotate documents and then use annotated text labels as the key variables in

the main downstream statistical analyses. Using these applications, we will show how LLMs can

1In general, the proposed DSL framework can be applied to any statistical method that

can be written as a convex optimization problem or a moment estimator. See our proof in

Appendix B.
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be incorporated into a wide range of text-as-data studies, while maintaining statistical validity.

Before we proceed, we want to clarify that when we use the term “expert-coding,” we do not

assume expert-coding is perfect or makes no error. Rather, we only assume that expert-coding

is a procedure that defines the benchmark against which the quality of the automated text

annotation is evaluated, as done in the established supervised machine learning literature for

decades (Hastie et al., 2009; Grimmer and Stewart, 2013). Importantly, while domain “human”

experts provide the benchmark in most social science applications so far, our proposed method

can use any high-quality, expensive annotations as the benchmark, and DSL does not require

that human experts provide the benchmark. For example, if users want to correct annotations by

lower-quality smaller LLMs with more expensive annotations by larger LLMs as the benchmark,

the same proposed methodology can be applied. Because our method can use any user-specified

coding procedure as the benchmark, researchers can also naturally incorporate widely used

strategies for handling errors and uncertainties in expert annotations (e.g., Benoit et al., 2009;

Hopkins and King, 2010; Mikhaylov et al., 2012). We provide additional discussion in Section 6.

In the next section, we begin by discussing text annotations and clarify the promises and risks

of using LLMs for automated text annotation. We then examine the problem of directly using

predicted variables in downstream analyses (Section 3). We introduce our proposed method

(Section 4) and illustrate its use using two empirical applications (Section 5). We provide

practical guides (Section 6) before we conclude. Throughout the paper, we focus on text-as-

data applications and prediction errors in automated annotation methods, but our proposed

method is more general and can be used to handle any form of prediction error. In Section 7,

we discuss the potential use of DSL for other areas of social science studies that rely on machine

learning predictions, such as analyses of image, audio, and video.

Related Literature

This paper draws upon the foundational literature on double/debiased machine learning and

doubly-robust estimation for missing data and causal inference (Robins et al., 1994; Robins and

Rotnitzky, 1995; Rotnitzky and Vansteelandt, 2014; Chernozhukov et al., 2018). Like these

papers, we exploit the influence function to derive debiased estimators. Our paper contributes

to the growing literature on the use of predicted variables in statistical analyses. A number

of papers develop methods for specific scenarios by making assumptions about the underlying

data-generating process and prediction errors (e.g., Wang et al., 2020; Fong and Tyler, 2021;

Zhang, 2021; Knox et al., 2022). In contrast to these papers, we only assume that researchers

control the sampling process for expert annotations, and we do not make any assumption about

the nature of prediction errors, which is particularly difficult to justify in applications of LLMs.
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Our paper is most closely related to recent methods that build on the doubly robust estimation

to deal with predicted variables (e.g., Angelopoulos et al., 2023; Egami et al., 2023; Mozer and

Miratrix, 2023). These papers cover cases of text-based outcome variables but not text-based

independent variables. By deriving a more general result, we cover cases where any subset of

the outcome and independent variables are text-based and accommodate a much wider range of

downstream analyses. This methodological generalization is fundamental because about 45% of

applications use text-based variables as independent variables. In addition, we make practical

contributions by providing new statistical software and clarifying detailed guides using two

empirical applications. Katsumata and Yamauchi (2023) also develop a framework for using

predicted variables while building on a different framework of control variates (Chen and Chen,

2000). We provide more technical discussions in Appendix A.

2 Automated Text Annotation

One of the most fundamental steps in many text-as-data research projects is to annotate doc-

uments. Over the last decade, scholars have used automated annotation methods to facilitate

this time-consuming step by training machines to mimic expert-coding. In this section, we dis-

cuss how researchers can use the recent advances in LLMs for a wide range of text annotation

tasks. We then clarify the potential risks of using LLM annotations, which motivates our main

methodological contributions in Section 3 and Section 4.

2.1 Large Language Models as Text Classifier

Large language models are hard to define sharply, but they have undeniably become a central

part of the natural language processing literature (Jurafsky and Martin, 2024). What distin-

guishes large language models from previous approaches is that they are trained on large collec-

tions of unlabeled data, gaining a proficiency in language that can be extended to downstream

tasks with relatively little in-domain labeled data (Brown et al., 2020). While the previous

iteration of models captured this information in feature representations called static word em-

beddings (Mikolov et al., 2013; Rodriguez and Spirling, 2022), the current generation of models

has learned a generative model of language. This allows social scientists not only to generate

new texts but also to use language itself (such as codebook directions) as the interface to get

the desired functionality from the model.

An increasing number of social scientists use LLMs as automated text classifiers: researchers

simply describe the annotation task in natural language instructions, and the LLM generates

text labels by predicting the most appropriate text to follow such a request. For example,

scholars have used LLMs to annotate sentiments, ideology, topics, hate speech, attitudes toward
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immigrants, and support for a war, among others (Bommasani et al., 2021; Ornstein et al., 2022;

Gilardi et al., 2023; Ollion et al., 2023; Pangakis et al., 2023; Ziems et al., 2023). See a wide

range of examples we summarize in Appendix F.

2.1.1 How to Use LLMs as Text Classifiers

To illustrate this exciting potential, we use Fowler et al. (2021) as an example. The text

annotation task here is to code the tones of ads into three categories (“Attack”, “Contrast”,

and “Promote”). In the codebook developed in the well-known Wesleyan Media Project and

used in Fowler et al. (2021), the tone of ads is defined as an answer to the following question.

”In your judgment, is the primary purpose of the ad text to promote a specific candidate, attack

a candidate, or contrast the candidates?” Instead of providing the codebook to trained expert

coders, we can supply the same codebook to LLMs (see Figure 2-(a)) by first describing the

codebook, then supplying Text to be classified, and finally prompt the LLM to Answer. In this

example, when we use GPT 4, it understands the codebook and annotates a given document

correctly as “Attack” (a response from the LLM is in a gray box).

More generally, text classification by LLMs can be performed in two steps. First, researchers

need to choose which LLM to use. For example, famous commercial models like GPT 4 and

GPT 3.5 are currently popular and famous, but researchers can also use open-source LLMs like

Llama 2. We note that our discussion is general and applicable to any LLMs, including those

developed in the future. In the second step, researchers decide on a prompt, i.e., a codebook

and an instruction about a given annotation task. Many papers show that recent LLMs can

perform a wide range of text annotation tasks by simply changing this prompt (e.g., Bommasani

et al., 2021; Ornstein et al., 2022; Gilardi et al., 2023; Ziems et al., 2023). See Appendix F for

examples of different types of prompts used in a wide range of social science annotation tasks.

Researchers can also provide some examples (several pairs of texts and labels), also known as

few-shot learning or in-context learning, to improve the prediction accuracy.2 In Figure 2-(b),

while we keep the codebook, a text to be classified, and an answer box (parts in boldface), we

added three pairs of texts and answers as examples in the middle (parts in a non-bold face).

The biggest benefit of using LLM annotations is that researchers can finish this automated

text annotation step within a day for most applications, which is even faster than the classical

supervised ML approach.

2How to choose examples for few-shot learning is an active area of research in natural language

processing. In practice, we recommend including illustrative examples that researchers would

include when creating a codebook of interest and training human coders.
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In your judgment, is the primary purpose of the ad text to promote a specific candidate, attack a candidate, or 
contrast the candidates? Answer either "contrast", "promote", or "attack". 
 
Text: """In 47 years, Mike Madigan hasn't been able to fix Illinois - and with JB Pritzker as his rubber stamp, 
there will only be higher taxes and more corruption. """ 
 
Answer:

attack

(a) Zero-shot learning (no exemplar)

In your judgment, is the primary purpose of the ad text to promote a specific candidate, attack a candidate, or 
contrast the candidates? Answer either "contrast", "promote", or "attack". 
 
Text: """ On Tuesday, Nevada voters will choose between a local problem solver and a con man who funneled money 
from a children's charity into a failed political campaign. It's no wonder voters have rejected Danny Tarkanian 5 times.""" 
 
Answer: contrast 
 
Text: """Donald Trump wants to roll back women's choice through the Supreme Court. I'll protect women's health care, 
and fully fund Planned Parenthood, in Florida. """ 
 
Answer: promote 
 
Text:"""Lt Governor Dan Patrick cut public education funding by over five billion dollars, cut more than ten thousand 
teaching positions, and cut support for pre-K. With fewer teachers and larger class sizes, Dan Patrick won't let teachers 
teach and students learn. We need new leadership in Texas - vote Mike Collier for Lt Governor. """ 
 
Answer: attack 

 
Text: """In 47 years, Mike Madigan hasn't been able to fix Illinois - and with JB Pritzker as his rubber stamp, 
there will only be higher taxes and more corruption. """ 
 
Answer:

attack

(b) Few-shot learning (exemplars in non-bold face)

Figure 2: How to Use LLMs as Text Classifiers.
Note: In (a) zero-shot learning, the basic prompt consists of a codebook (the first two lines), a
text to be classified (the next two lines), and an answer box (the last line). A response from an
LLM is represented in a gray box. In (b) few-shot learning, while keeping the basic components
(parts in a bold face), users can add examples (parts in a non-bold face) in the middle.

2.1.2 Empirical Illustration of LLM Annotation

While the idea of using LLMs for text classification sounds promising, does it work in practice?

In this section, we use two empirical applications of ours and the literature review to empirically

illustrate the performance in a wide range of settings, which clarifies the promise and challenges.

Our first application is based on Fowler et al. (2021). In particular, we use all the 13, 040
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ads that are expert-coded by the original authors and examine the prediction accuracy of LLMs

classifying the tone of ads. The second application is based on Pan and Chen (2018). We use

their expert-coded 1, 412 citizen complaints to evaluate how well LLMs can classify whether

each complaint accuses of wrongdoing by prefecture-level officials in China.3

Panels (a) and (b) in Figure 3 report F1 scores4 for six versions of LLMs: GPT 4, GPT 3.5,

and Llama 2 with zero-shot and few-shot learning. We provide the exact implementation details

in Appendix G and I. Several points are worth noting. First, most of the LLMs can achieve

F1 scores about 75 ∼ 90%. This is promising and surprising given that these LLMs were not

trained for these text annotation tasks, and LLMs were only given the codebook and a couple

of examples (in the case of few-shot learning).

Second, the prediction performance varies across models and applications. In these two

applications, F1 scores range from 48% to 95%. To further illustrate this wide variation in

prediction performance, we also analyze a diverse set of empirical validation studies. In par-

ticular, based on a review paper by Ollion et al. (2023), we collected eight recent papers that

examine the performance of LLM annotations in the social sciences, and we analyzed 113 text

annotations tasks in total (see more details in Appendix F.2). We find that F-1 scores range

from as low as 20% to more than 95%, and many tasks show about 70 ∼ 80% (see Panel (c) in

Figure 3). This huge variation in prediction accuracy is a common feature of LLM annotations

in the social sciences, and it is one of the key potential challenges of using LLMs, which we turn

to next.

2.2 Potential Risks of LLM Annotation

As with any new technology, we have to carefully understand the potential risks as well as its

promises. Even though LLMs have huge potential in many different text annotation tasks, they

are, of course, not perfect and make prediction errors. While prediction errors can arise in any

prediction method, including the classical supervised ML method, prediction errors in LLM

classification are particularly difficult to understand for many reasons.

First, as we saw in Section 2.1.2, the amount and direction of prediction errors in LLM clas-

3See Section 5.2 for the details on Pan and Chen (2018).

4F1 score is a harmonic mean of the recall and precision, i.e., F1 = 2/(recall−1 + precision−1),

and it is the most standard measure of prediction performance when categories are imbalanced.

Classification accuracy is another popular measure, but it can be artificially high when categories

are imbalanced. For readers more familiar with accuracy, we also report the figures based on

accuracy in Appendix G and I, finding qualitatively similar results.
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Figure 3: Prediction Performance of LLMs as Text Classifiers.

sification can substantially vary depending on tasks, prompts, LLM models, and other unknown

parameters in models. Most importantly, these variations in prediction errors are unknown and

unpredictable to users. Recent LLMs are large-scale black box models that exhibit incredible

language capacities in many different tasks for which LLMs were not trained (Bommasani et al.,

2021). We are constantly surprised by how well LLMs can perform many different tasks, but

this also means that we do not fully understand when and why they might fail.

Second, social scientists often study complex, nuanced concepts expressed in documents,

and thus, text annotation tasks in the social sciences are inherently difficult. Indeed, for many

applications, even domain experts need several rounds of pilot coding and extensive discussions
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to create, polish, and finalize a codebook to define how to label texts. Given the inherent

difficulty of the task, prediction errors are inevitable.

Third, many recent LLMs lack the basic scientific requirement of transparency and replica-

bility. In particular, many recent successful LLMs, e.g., GPTs, are proprietary methods, and

as a result, users and research communities, in general, do not know the training data or exact

training procedures that LLMs use (Spirling, 2023). Without access to the training data and

training procedures, it is nearly impossible for users to understand the prediction errors that

LLMs make.

Finally, a large number of papers have shown that LLMs also inherit unknown social, po-

litical, and racial biases contained in the unknown large-scale training data (see, e.g., Bender

et al., 2021). Prediction errors in LLMs can come not only from technical reasons but also from

deeper reasons related to ethics and fairness, which further complicates the understanding of

prediction errors.

In sum, it is extremely difficult or nearly impossible to fully understand how prediction

errors occur in LLM classification. In Section 3, we clarify such prediction errors in LLM

classification, and more generally in any automated text classification approach, can significantly

bias downstream text analyses, if the errors are ignored when using predicted text labels.

3 Predicted Text Labels as Variables in Downstream Analyses

While document-level text classification is essential, text annotation is rarely the end goal of

social science research. It is only the first step. Social scientists are often interested in using

predicted text labels as variables in subsequent statistical analyses. Even though researchers

often analyze predicted text-based variables as if they were observed without any error, this

section clarifies that ignoring such prediction errors5 in the first step of text annotation, even if

the errors are small, leads to substantial bias, invalid confidence intervals, and wrong p-values

in downstream statistical analyses of text-based variables. Biases from prediction errors exist

even when the prediction accuracy in the text classification step is extremely high, e.g., above

90% or even at 95%. This is because prediction errors are not random—prediction errors are

correlated with observed and unobserved variables we include in downstream analyses.

5In this paper, we define prediction errors to be the discrepancy between the text labels

predicted by an automated text annotation method and the text labels that would have been

assigned by expert-coding. As emphasized in Section 1, expert-coding is defined as a procedure

that defines the benchmark against which the quality of the automated text annotation is

evaluated, and DSL does not require that human experts provide the benchmark.
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3.1 Setup and Quantity of Interest

Before describing the problem of prediction errors, we begin by defining statistical analyses we

conduct after text annotation. Here, we focus on the most common regression analyses, and we

discuss other common analyses, such as causal inference with texts, in Section 6.

Suppose researchers are interested in analyzing N documents. For each document i, we

define Yi as the outcome of interest and Xi as independent variables. Using general notation,

we can define the quantity of interest as coefficients β of a generalized linear model.

E(Yi | Xi) = f(X⊤
i β) (1)

where f(·) is an inverse of a canonical link function for the generalized linear model. This

general setup incorporates a wide range of common statistical analyses, such as linear, logistic,

multinomial logistic, Poisson, and linear fixed-effects regression, as well as the estimation of

category proportions over time or across groups.6 Importantly, we only view coefficients β as a

low-dimensional summary, and thus, this paper does not assume the underlying data-generating

process follows a specified parametric model (Lundberg et al., 2021).

Researchers might also be interested in estimating the first differences or other quantities

that are functions of coefficients rather than coefficients themselves (King et al., 2000). Our

proposed methods can be applied not only to coefficients but also to any function of coefficients.

We provide such examples in Section 5.2.

3.2 Current Practice: Directly Using Predicted Labels as Variables

In text analyses, a subset of the outcome Y and independent variables X are based on some

forms of text labels, and creating such text-based variables requires text annotation. When

using automated text annotation methods to predict text labels, regardless of the exact choice,

statistical analyses take the following steps in general. First, researchers check the accuracy

of prediction against expert-coded data, e.g., using cross-validation. If the accuracy is “low,”7

researchers retrain the model until it gets better (e.g., using different LLMs or ML models

6Our literature review of the ten political science journals finds that our setup covers com-

mon statistical models used in more than 91% of applications using text annotations: Linear

regression (49% of applications), Logistic regression (21%), Category proportions over time or

across groups (Subgroup means) (19%), and Poisson regression (2%).

7Scholars use different criteria for deciding how much is “low” and “high enough,” but many

scholars use 80 ∼ 90% as rough thresholds. In our literature review, the final prediction models

researchers chose have the accuracy of 89.8% and the F1 score of 84.6%, on average.
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and adding more informative predictors). Then, once the accuracy becomes “high enough,”

they now use predicted text labels directly in downstream analyses as if those variables were

directly observed and not predicted. The idea is that when the prediction accuracy is high, the

prediction model sufficiently mimics expert-coding, and thus, prediction errors are small enough

that they do not affect downstream analyses significantly.

More concretely, most researchers use one of the following two ways to use predicted variables

in downstream text analyses. The first approach, which we call LLM-Only Estimation, is to

use LLMs to predict text labels for every document (see Section 2 for different ways to improve

LLM-prediction).

LLM-Only Estimation

Step 1: Predict text labels using LLMs for each document.

Step 2: Sample a subset of documents for expert-coding.

Step 3: Check the prediction accuracy using the expert-coded data. Repeat Step 1 until

the prediction accuracy is high.

Step 4: Use LLM-predicted variables in downstream text analyses.

The second and more classical approach is to use the supervised machine learning model

(e.g., random forest, lasso, and so on) to predict text labels. The main steps are essentially

the same as those in the LLM-Only Estimation, and the only difference is the way in which

researchers produce predictions (via LLMs or the supervised ML method estimated with the

expert-coded data).

Classical Supervised Learning Estimation

Step 1: Sample a subset of documents for expert-coding.

Step 2: Train a supervised machine learning model with the expert-coded data.

Step 3: Check the prediction accuracy using the expert-coded data via cross-validation.

Repeat Step 2 until the prediction accuracy is high.

Step 4: Use ML-predicted variables in downstream text analyses.

3.3 The Methodological Challenges of the Current Practice

Ignoring prediction errors in the text annotation step, even if the errors are small, leads to bias,

invalid confidence intervals, and wrong p-values in the subsequent statistical analyses of text-

based variables. This is because prediction errors are not completely random—prediction errors

12



are correlated with observed and unobserved variables we include in downstream analyses.8 Even

small prediction errors can bias downstream analyses in any direction by any amount. Because

exactly the same problem applies to the LLM-only estimation and the classical supervised

learning estimation, we do not distinguish them, and we discuss prediction errors in general.

To concretely illustrate the problem, we focus on a simple case where the outcome variable

Y requires text annotation, and researchers want to regress Y on independent variables X to

estimate coefficients β defined as,

E(Yi | Xi) = X⊤
i β. (2)

Researchers can easily obtain the ordinary squares estimates of β when the outcome variable

of interest Y is observed for every document. However, when Y requires text annotation and

Y itself is not observed for each document, researchers instead regress the predicted outcome

variable Ŷ on independent variables X. This linear regression with the predicted outcome

variable will lead to unbiased coefficient estimation when prediction error, ei = Ŷi − Yi, is zero

on average across all different combinations of X.

E(ei | Xi) = 0. (3)

Even though this expression might seem similar to the standard exogeneity assumption, it

turns out that this condition implies much stronger assumptions. Formally, researchers can

ignore prediction errors only when prediction errors are completely random, i.e., prediction

errors are not affected by the independent variable, the outcome variable, or any unobserved

confounder. Unfortunately, this condition is untenable in almost all social science applications.

While we focused on one setting where Y is text-based, similar stringent conditions are required

when other types of variables (e.g., independent variables) are text-based. We offer additional

discussions and the general bias formula in Appendix B.

The literature has explored several approaches to address this problem. First, researchers

might consider incorporating bootstrap to capture the uncertainty of the text-prediction step,

with the hope of addressing prediction errors. Unfortunately, the central problem of prediction

errors is the bias correlated with observed and unobserved variables in downstream analyses

and how fast the bias goes to zero asymptotically. Thus, simply adding bootstrap to the current

practice cannot eliminate this problem. Second, researchers might make a stringent modeling

8We note that this problem of ignoring prediction errors is common not only in text-as-data

applications but also in many other social science applications (see similar discussions, e.g., Fong

and Tyler, 2021; Zhang, 2021; Knox et al., 2022; Katsumata and Yamauchi, 2023).
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Figure 4: Ignoring Prediction Errors Lead to Bias and Invalid Confidence Intervals.
Note: The first row shows the results of estimators ignoring prediction errors, and the second
row previews the results of DSL introduced in the next section. The first, second, and third
columns represent bias, coverage rates of 95% confidence intervals, and root mean squared errors
(RMSE), respectively. X-axis shows varying prediction accuracy of the underlying automated
text annotation method.

assumption to explicitly model E(ei | Xi) (i.e., how prediction errors vary with X) (e.g., Wang

et al., 2020). This type of method works only when the model for prediction errors is correct

and the outcome variable is text-based, while they cannot produce valid confidence intervals

or p-values even under the correct model of prediction errors. Our proposed approach will not

make any modeling assumptions about how prediction errors occur.

3.4 Simulation Study

We now use a simulation study to illustrate the problem of ignoring prediction errors. While

our method is general, we consider logistic regression with the text-based outcome as a common

example. We vary the prediction accuracy of the underlying automated annotation methods—

from as low as 50% to as high as 95%—and evaluate how ignoring prediction errors affects

downstream regression analyses. We detail the data generation process in Appendix D.

The first column in Figure 4 shows the average bias across coefficients standardized by

the true coefficients. When prediction errors are ignored (the first row), bias decreases as the

accuracy of the underlying prediction method goes up. However, bias can be as large as 30%
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and 18% of the true coefficients even when the underlying prediction accuracy is 90% and 95%.

The second column in Figure 4 shows the coverage rate of the 95% confidence intervals (the

probability of reported confidence intervals covering the true coefficients), and the coverage rates

should be at least 95% if a given estimation method is statistically valid. Unfortunately, when

prediction errors are ignored, the coverage rate of 95% confidence intervals is as low as 32% and

58% even when the underlying prediction accuracy is 90% and 95%. Bias and coverage rates

are, of course, much worse when the accuracy of the prediction method is about 80 ∼ 90% or

lower, as we see in most applications. These results demonstrate that researchers cannot ignore

prediction errors even when the underlying prediction method has excellent prediction accuracy.

The second row of Figure 4 previews the results of the proposed DSL. As we show in the next

section, DSL is theoretically guaranteed to have asymptotically unbiased estimates and valid

confidence intervals, regardless of the accuracy of the underlying prediction method (see the

first and second columns in the second row). When the underlying prediction method becomes

more accurate, DSL also gets more accurate and has smaller standard errors, which is shown

by the reduction in root mean squared error (RMSE) (see the third column in Figure 4). When

the accuracy of the underlying prediction method goes up from 50% to 95%, RMSE reduces

from 0.16 to 0.10, which is equivalent to 37.5% reduction in standard errors.

4 Design-based Supervised Learning

We propose a general method, which we call design-based supervised learning (DSL), to use

predicted variables in downstream analyses without introducing bias from prediction errors.

This general framework allows researchers to use LLM annotations or text labels predicted by

ML methods in downstream text analyses while maintaining statistical validity.

4.1 Overview

We first provide an overview of the proposed DSL method. While the proposed framework can

accommodate various versions of implementations, we first focus on the basic version and then

discuss other extensions later.

Design-based Supervised Learning Estimator (DSL)

Step 1: Predict text labels using LLMs for each document.

Step 2: Sample a subset of documents for expert-coding.

Step 3: Train an ML model to improve LLM-prediction with the expert-coded data.

Step 4: Combine expert-coded labels and predicted variables in the DSL regression.
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Importantly, most steps (Steps 1–3) are similar to existing approaches and thus are already

familiar to applied researchers. In the first step, like the LLM-only estimation, we predict

text labels using LLMs. In the second step, like the existing approaches, we sample a subset

of documents for expert-based coding. In the third step, researchers can use expert-coded

documents as the training data and train a supervised machine learning model where we predict

the expert-coded labels with predictors that include LLM annotations generated in Step 1 and

any other variables that are predictive (e.g., term-document matrices).9 This step is similar to

Step 2 in the classical supervised learning estimation, and the only difference is that users can

also incorporate LLM annotations as predictors for the expert-coded labels. The fourth step is

an essential defining feature of DSL. We combine expert-based coding and predicted variables

in a tailored fashion, which we describe in detail in the next sections.

4.2 Assumption: Design-based Sampling

Before we describe the details of the DSL regression estimator, we clarify the central assumption

behind DSL. In particular, we require that researchers know the process through which docu-

ments are sampled for expert-coding. Formally, we make the following assumption by defining

πi to be the probability of sampling document i for expert-coding.

Assumption 1 (Design-based Sampling for Expert-Coding)

The probability of sampling documents for expert-coding πi is known to researchers, and πi is

larger than zero for every document.

Assumption 1 holds when the researchers can choose which documents to be coded by

experts. For example, if the researchers have 10000 documents and sample 100 of them to expert-

annotate at random, πi =
100

10000 = .01 for all documents. Here, the sampling probability for each

document is decided by the researchers and is greater than zero. We also allow more complex

stratified or block sampling schemes (i.e., change the sampling probability of documents based

on document-level observed covariates) and can cover any case where the sampling probability

πi depends on the LLM annotation, document-level covariates, independent variables, or the

outcome variable, as long as πi is known. This generality is important because researchers

might want to over-sample documents that are difficult to annotate. For example, in Fowler

et al. (2021), if researchers a priori expect that longer political ads are more difficult to annotate,

they can change the sampling probability based on the length of the ads. In Section 5.1.3, we

discuss how to determine the required number of expert annotations in each application.

9Researchers can also skip this third step, and doing so is equivalent to using the identity

function for predicting expert-coded labels with LLM labels.
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Importantly, Assumption 1 does rule out some applications, and two are worth noting: (1)

Researchers use external coding (rather than their own expert-coding) to measure text-based

variables of interest, and it is unknown why only a subset of documents were coded. For example,

Hager and Hilbig (2020) analyze speech documents published by the German government. For

47% of all documents, the topic of the speech is assigned by the German government, but the rest

of the documents are published without an explicit topic assignment. In this case, researchers do

not decide which document to be sampled for the expert-labeling, and thus, the assumption is

violated. (2) Another scenario occurs when researchers need to analyze documents in real-time

as soon as they obtain text data, e.g., making polling predictions based on social media posts on

election day. In such cases, it might be inevitable to use expert-coded documents from the past,

but in this example, social media posts on election day have the probability of being sampled

for expert-coding is zero, and thus, the assumption is violated. However, if researchers have

time to sample a subset of social media posts on election day for expert-coding, Assumption 1

holds because now every document they analyze has the probability of being labeled greater

than zero. Therefore, when researchers need to collect documents over time, researchers can

guarantee Assumption 1 by making sure to sample documents for expert-coding from each time

period they analyze.

While we do not cover all text-as-data scenarios, our approach covers the vast majority of

social science research applications where researchers need to annotate a corpus of documents

that are available in total before analyzing data. Even more importantly, Assumption 1 can

be guaranteed by research design alone. This is akin to how randomized experiments can

guarantee the absence of unmeasured confounding by randomizing treatments. Our assumption

is transparent and easy to justify. This is the reason why our method is named design-based

supervised learning.

4.2.1 Assumptions We Do Not Make

Understanding assumptions we do not make is as important as understanding the assumptions

we do make. In particular, we make no assumptions about prediction errors and allow for

arbitrary prediction errors. Researchers do not need to assume how prediction errors arise in

LLMs or ML prediction. We do not need to assume LLM annotations are unbiased and accurate,

or the fitted supervised ML model is correctly specified, unbiased, and accurate. In practice,

this means that researchers can use predictions from LLMs or supervised ML without worrying

about their prediction errors or inherent biases.

This is in sharp contrast to existing alternatives. Both the LLM-only estimation and the

classical supervised learning approach have to assume prediction errors are completely random.
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This assumption is often severely violated in practice, and most importantly, researchers cannot

guarantee this assumption by research design.

4.3 DSL Regression

We now examine how the proposed DSL estimator can incorporate predicted variables without

introducing bias under Assumption 1. To provide intuition, we start with a simple case and

generalize it step by step.

4.3.1 Building Intuition with Estimation of Category Proportion

Suppose researchers are interested in estimating the proportion of documents belonging to a

particular category, e.g., the proportion of political ads attacking opponents. Define Yi ∈ {0, 1}

to denote whether a given political ad attacks opponents. When using the LLM-only estimation

or the classical supervised ML methods, users would first predict whether each ad attacks

opponents Ŷi and then average it over ads to estimate the proportion of attacking ads.

In contrast, DSL uses the following design-adjusted outcome.

Ỹi = Ŷi︸︷︷︸
Predicted
Outcome

− Ri

πi
(Ŷi − Yi),︸ ︷︷ ︸

Bias-Correction Term

(4)

where Yi is the outcome of interest coded by experts, Ri is a binary variable taking 1 if document

i is expert-coded and 0 otherwise, and πi (defined in Section 4.2) is the probability of sampling

document i for expert-coding.10 This estimator has deep theoretical connections to doubly

robust estimation in the causal inference literature (Robins et al., 1994; Chernozhukov et al.,

2018), and the bias-correction term is similar to the one in the augmented inverse probability

weighting estimator.

In the most simple case of random sampling with equal probabilities (π = n/N where n

is the number of expert-coded documents and N is the total number of documents), the DSL

10The design-adjusted outcome is equal to Ŷi when Ri = 0 and is equal to Ŷi − (Ŷi − Yi)/πi

when Ri = 1. It might be counter-intuitive to change the outcome for documents Ri = 1 when

the outcome of interest Yi is observed. Importantly, the goal is not to correct the prediction

error at each document level, but at the level of quantities of interest (average in this case,

as we show in equation (5) below). In fact, we can only estimate the prediction error from

documents with Ri = 1, which is used to correct outcomes for documents with Ri = 0 on

average. More generally, it is usually impossible but also unnecessary to bias-correct outcomes

at each document level (Hopkins and King, 2010).
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estimator becomes simple.

1

N

N∑
i=1

Ỹi =
1

N

N∑
i=1

Ŷi︸ ︷︷ ︸
Mean of

Predicted Outcomes

−
(

1

n

∑
i:Ri=1

Ŷi︸ ︷︷ ︸
Mean of

Predicted Outcomes

in Labeled Data

− 1

n

∑
i:Ri=1

Yi︸ ︷︷ ︸
Mean of

Observed Outcomes

in Labeled Data

)
(5)

The main idea is to use the expert-coded data to estimate bias from prediction errors (the

difference between the second and third terms on the right-hand side), which we subtract from

the conventional estimator that relies only on predicted labels (the first term on the right-

hand side). For example, suppose users have N = 10, 000 ads and randomly sampled n = 100

ads for expert annotation. The first term on the right-hand side estimates the proportion of

attacking ads by averaging the predicted labels in all N = 10, 000 documents (suppose it is

20%). Because this first term suffers from bias due to prediction errors, the second and third

terms on the right-hand side estimate the bias to be subtracted. In particular, the second

term estimates the proportion of attacking ads by averaging the predicted labels in n = 100

expert-coded documents (suppose it is 18%), and the third term estimates the proportion of

attacking ads by averaging the expert-coded labels in n = 100 expert-coded documents (suppose

it is 10%). Because the expert-coded data are randomly sampled, we can estimate the bias by

taking the difference between the second and third terms, 18 − 10 = 8%, which we subtract

from the first term (i.e., the original naive estimator that only uses predicted labels). In this

simple example, the DSL estimate is 20− (18− 10) = 12%.

4.3.2 DSL Linear Regression

While the previous section focuses on the estimation of category proportions under simple

random sampling, the DSL framework can be applied to linear regression as well (under any

user-specified sampling strategy). Specifically, the DSL linear regression simply needs to regress

the design-adjusted outcome Ỹi (equation (4)) on independent variables Xi. Formally, the DSL

regression estimator can be written as

β̂DSL = (X⊤X)−1X⊤Ỹ (6)

where Ỹ = (Ỹ1, . . . , ỸN ) and ith row of matrix X is Xi. Under Assumption 1, the DSL estimator

is consistent and asymptotically normal when we use cross-fitting (Chernozhukov et al., 2018)

to generate predictions.11 The corresponding confidence intervals can be constructed with the

11This step corresponds to Step 3 in the DSL workflow (see Section 4.1). More technical

details are in Appendix B.
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usual standard error formula. Valid statistical inference is possible because the design-adjusted

outcomes correct the prediction error on average across all different combinations of X.

E(Ỹi − Yi | Xi) = 0. (7)

We provide proof of these theoretical properties in Appendix B.

Importantly, the DSL estimator corrects bias only under Assumption 1 without making any

assumption about prediction errors in Ŷi. In practice, this means that researchers can use any

LLMs and supervised ML methods to construct the predicted outcomes, even if LLMs and ML

methods contain arbitrary prediction errors. While the DSL regression allows for any prediction

error, it becomes more accurate (i.e., standard errors are smaller, and confidence intervals are

narrower) when the prediction errors are smaller. Therefore, researchers can exploit the recent

advances in LLMs and supervised ML methods without sacrificing valid statistical inference,

while reducing standard errors as the prediction step becomes more accurate. We illustrated

these desirable properties in simulation studies (Section 3.4) and will show more results in

empirical applications (Section 5).

4.3.3 Generalization of DSL

Finally, we emphasize that the same general idea applies to a large class of generalized linear

models we introduced in Section 3.1 (e.g., logistic, multinomial-logistic, Poisson, and linear fixed-

effects regression) and to general cases where any subset of the outcome variable and independent

variables are text-based. The only but crucial difference is that we have to bias-correct not the

outcome variable itself (as we did in equation (4)) but the underlying moment function. In

general, define m(Yi, Xi;β) to be the subgradient of the convex optimization problem defining

a generalized linear model. Then, the moment function for the DSL estimator can be written

as

m(Ŷi, X̂i;β)−
Ri

πi

(
m(Ŷi, X̂i;β)−m(Yi, Xi;β)

)
(8)

where Ŷi and X̂i are predictions for the outcome Yi and independent variables Xi. We provide

technical details in Appendix B.

5 Empirical Applications

We now use empirical applications to illustrate how to apply DSL in a wide range of settings.

The first application based on Fowler et al. (2021) considers settings where the outcome vari-

able is text-based, while the second based on Pan and Chen (2018) examines cases where the

independent variables are text-based.
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5.1 Text as Outcome: Fowler et al. (2021)

Fowler et al. (2021) examine how and whether the tone of political ads varies across Facebook

and television. To test this question, after annotating the tone of ads, the original authors run

a linear fixed effects model that regresses the tone of ads on the main independent variable

indicating whether a given ad is from Facebook or television, while including candidate-fixed-

effects.12

In this section, we conduct empirical validation using the expert-coded political ads from

Fowler et al. (2021). In particular, we use 13, 040 expert-coded political ads as the target popula-

tion of documents (N = 13, 040). But we pretend that we can only sample n = 1000 documents

for expert-coding (less than 8% of the original number of expert-coding) and use automated text

annotations methods to predict the tone of ads for the remaining 12, 040 documents. We then

assess how well DSL and other methods, which are based on 1000 expert-coded documents with

predicted 12, 040 documents, can recover the benchmark estimates, which use the entire 13, 040

expert-coded documents. By doing so, we can illustrate the use of DSL step by step, while

testing how DSL and other methods perform when the underlying automated text annotation

methods have non-random prediction errors.

5.1.1 Setup

DSL requires four simple steps. First, we generate LLM annotations for the entire population

of documents. As we discussed in Section 2, we here consider six versions: GPT 4, GPT 3.5,

and Llama 2 with zero-shot and few-shot learning. In the second step, we randomly sample

1000 documents for expert-coding (we will discuss how to determine the number of expert-

coding in Section 5.1.3).13 In the third step, using the expert-coded data, we further improve

LLM predictions by cross-fitting the generalized random forest (Athey et al., 2019) to predict

the expert-coded labels with LLM annotations produced in the first step. Finally, we combine

expert-coded labels and predicted labels in the DSL linear fixed-effects regression, where we

regress the design-adjusted outcome on the same independent variables used in the original

paper, that is, the Facebook dummy variables and candidate-fixed-effects. The main quantity of

interest in the original paper is the coefficient of the Facebook dummy variable. Our companion

12We follow the original paper’s definition, and the tone of ads is computed by the weighted

average of the tone of ads in a given pair of a candidate and a platform where weights are

proportional to the expenditure of a given ad.

13In this empirical validation, we rely on expert-coding from the original authors, so we simply

reveal expert-coding for sampled documents.
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R package dsl can implement the third and fourth steps with one function, while taking LLM

annotations (Step 1) and expert-coding (Step 2) as inputs from users.

We compare DSL against the classical supervised learning approach and the LLM-only esti-

mation. For the classical supervised learning approach, we examine five widely used supervised

ML methods: drop-out regularized logistic regression (used in the original paper), lasso, ridge,

random forest, and XGBoost. We use a set of predictors used in the original paper (more than

7000 variables) that are constructed by processing the ad’s text, images, video, and audio. For

the LLM-only estimation, we consider the same six versions of LLM annotations. We expect that

these existing approaches can provide unbiased estimates with valid confidence intervals, only

when prediction errors are completely random, while DSL provides valid statistical guarantees

even with arbitrary prediction errors.

5.1.2 Results

The results are reported in Figure 5. Due to the space constraints, we focus on two outcomes

“Contrast” and “Promote” in the main text as these two outcomes have the highest and lowest

LLM performances, while reporting the results on “Attack” in Appendix H. In Figure 5-(a),

the leftmost column reports the benchmark estimates based on the entire sample of 13, 040

expert-coded documents. The remaining columns show point estimates and standard errors of

different methods, and the X-axis shows the underlying automated text annotation method.

Figure 5-(b) reports coverage rates of the 95% confidence intervals.14 If a method can produce

valid confidence intervals, coverage rates of its 95% confidence interval should be at least 95%.

We now discuss each method in order. First, we look at the LLM-only estimation. Fig-

ure 5-(a) shows that point estimates have large variations depending on the underlying LLM

method used for automated text annotations. This is because the LLM-only estimation ignores

differential prediction errors that each LLM method makes, and as a result, estimates of the

quantity of interest are biased. Some methods have small biases for one outcome (e.g., Few-

shot learning with Llama-2 when the outcome is “Contrast”), but no method has small biases

across both outcomes. Crucially, in the real-world application where researchers cannot observe

the “Benchmark” estimate (unless they expert-code every single document), it is impossible for

users to decide which estimates to report and trust. Indeed, depending on which LLMs users

choose, they could reach statistically and substantively different results. For example, when

researchers use GPT-4 with Few-shot learning, they might conclude the effect on “Promote” is

14We compute this as the probability of confidence intervals covering the benchmark estimate

over 500 repeated sampling of the population of documents and expert-coding.
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Figure 5: Comparisons of DSL and Existing Approaches using Fowler et al. (2021).
Note: In Panel (a), red dotted lines represent point estimates of the “Benchmark” estimates,
and gray dotted lines represent their 95% confidence intervals. To show the average performance
across random sampling of expert-coding, we report the average point estimates and standard
errors across 500 repeated sampling. In Panel (b), blue dotted lines represent 95%.
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substantively and statistically indistinguishable from zero, whereas they would find a statisti-

cally significant, negative effect when they use Llama-2 with Few-shot learning. Figure 5-(b)

shows that confidence intervals based on the LLM-only estimation are, in general, invalid (i.e.,

cannot cover the benchmark estimates with 95%) due to large biases. In sum, this large vari-

ation in estimates is the fundamental problem of ignoring prediction errors: researchers can

get statistically and substantively different estimates depending on the choice of LLMs, and

there is no way to decide which estimate is the most credible. More generally, the LLM-only

estimation has no statistical guarantees in the presence of non-random prediction errors, i.e.,

some methods had good point estimates for one outcome in this application, but that was a

statistical coincidence.

Next, we look at the classical supervised ML method, which has the same problem of ignor-

ing prediction errors. Just like the LLM-only estimation, point estimates have large variations

depending on the underlying ML method used for automated text annotation. Importantly,

this variation exists even though each supervised ML method has roughly the same prediction

performance. Interestingly, estimates from XGBoost have small biases for both outcomes. How-

ever, getting a good point estimate is not sufficient in social science analyses, and it is crucial

to report a valid uncertainty measure. As we discussed in Section 3, unfortunately, the classical

supervised ML method underestimates standard errors, and as a result, it has invalid confidence

intervals. Figure 5-(b) shows that, even for “XGBoost” that have good point estimates, the 95%

confidence intervals only cover the true effect about 50%, which in practice means that reported

standard errors are severely underestimated and reported p-values are wrong. As discussed in

Section 3, these problems cannot be solved by simply adding bootstrap.15

Finally, we discuss how the proposed DSL overcomes the shortcomings of the existing meth-

ods. Several points are worth emphasizing. First, unlike the existing methods, point estimates of

DSL are stable regardless of the underlying automated text annotation methods users choose,

and they all have small biases. This property is fundamental in empirical research because

researchers do not need to worry that statistical and substantive conclusions might change if

they happen to use different LLMs. Therefore, researchers can justify the use of LLMs without

assuming that predictions from LLMs are unbiased or accurate. Here, we focus on prediction

based on LLMs, but the DSL regression can also be used to correct biases when the automated

text annotation is done with the classical supervised ML method. Second, as we see in Fig-

15Researchers might wonder about extremely small confidence intervals for the supervised

ML method. This is due to both regularization bias and the failure to incorporate prediction

uncertainty, which both lead to smaller invalid standard errors.
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Figure 6: Power Analysis to Determine the Required Number of Expert Annotations.
Note: Each panel reports the current standard errors (1000 expert annotated samples) and
predicted standard errors for different numbers of expert annotations. The left and right panels
consider DSL analyses when the outcome is “Contrast” and “Promote”, respectively.

ure 5-(b), DSL gives valid standard errors and confidence intervals (i.e., reported confidence

intervals have a coverage rate of 95%), unlike the existing methods that significantly underesti-

mate the true uncertainty. Taken together, DSL provides stable, unbiased point estimates and

valid confidence intervals regardless of which LLMs they use to automate annotations. This is

because DSL explicitly takes into account prediction errors through the design-based sampling

of expert-coding.

Researchers might wonder about the wider confidence intervals of DSL relative to other

methods. First, DSL estimators rightly have larger standard errors because they properly take

into account prediction errors. In contrast, by ignoring prediction errors, the confidence intervals

of the existing methods are invalid and underestimate the true uncertainties. Indeed, falsely

narrow confidence intervals around biased estimates are exactly what we should avoid: we do

not want to be falsely confident about wrong estimates. Second, in practice, researchers can

conduct a power analysis to decide the number of expert-coded documents necessary for reducing

standard errors of DSL to a certain level, which we discuss next.

5.1.3 Power Analysis

The number of documents experts need to annotate depends on applications. To help researchers

in each specific application, we develop a data-driven power analysis: after annotating a small

number of documents, we can predict how many more documents researchers need to annotate
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in order to achieve a user-specified size of standard error.16 Figure 6 predicts how standard

errors reduce as the number of expert annotations increases. For example, as in traditional

power analysis, suppose researchers expected a coefficient of the Facebook dummy variable to

be −0.08 when the outcome is “Contrast”. To detect this effect size with sufficient statistical

power, scholars ordinarily need standard errors smaller than 0.04. From this figure, researchers

can predict that randomly sampling 500 additional documents for expert annotations will reduce

the current standard errors from 0.045 to about 0.0375.

5.2 Text as Independent Variables: Pan and Chen (2018)

We now use Pan and Chen (2018) to consider settings where the independent variables are text-

based. This application illustrates the general applicability of our proposed approach: unlike

the previous application, documents of interest are written in Chinese, and the original authors

use logistic regression as the downstream statistical model.

The key research question in this study asks whether Chinese officials systematically conceal

complaints of corruption from upper-level authorities. To test this question, after annotating

whether each citizen complaint accuses of prefecture-level or county-level wrongdoing (Prefec-

ture Wrongdoing and County Wrongdoing), the original authors run a logistic regression that

regresses the upward reporting (i.e., whether a given complaint is reported upward to provincial-

level officials) on the aforementioned two independent variables (Prefecture Wrongdoing and

County Wrongdoing) and other control variables.

In this section, we again check the performance of DSL and existing methods against the

benchmark estimate based on the entire 1, 412 expert-coded complaints. We pretend that we can

only sample n = 500 documents for expert-coding and use automated text annotation methods

to predict Prefecture Wrongdoing and County Wrongdoing for the remaining documents. We

then assess how well DSL and other methods can recover the benchmark estimates. While the

implementation of each method is similar to the one we illustrate in the previous application,

we provide all the details in Appendix J.

Figure 7 shows estimated coefficients of Prefecture Wrongdoing and County Wrongdoing as

well as the coverage rates of their 95% confidence intervals.17 As in the previous application,

estimates from the LLM-only-estimation are biased, and importantly, substantive and statistical

conclusions can flip depending on which LLMs users choose for automated text annotation.

These variations exist even though the prediction accuracy of different LLMs is roughly similar

16Our R package dsl implements this power analysis with one function.

17Appendix J reports results based on the first differences, which reveals the same findings.
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Figure 7: Comparisons of DSL and Existing Approaches using Pan and Chen (2018).
Note: In Panel (a), red dotted lines represent point estimates of the “Benchmark” estimates,
and gray dotted lines represent their 95% confidence intervals. To show the average performance
across random sampling of expert-coding, we report the average point estimates and standard
errors across 500 repeated sampling. In Panel (b), blue dotted lines represent 95%.
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(see Appendix I). We emphasize that some methods (e.g., Llama 2) happened to have small

biases and reasonable coverages in this application, but this is simply a statistical coincidence

without any theoretical guarantee. In the real-world application where researchers cannot see the

“Benchmark” estimate, it is impossible for users to decide which estimate is the most credible.

As in the previous application, estimates from the classical supervised ML approach are heavily

biased and have invalid confidence intervals.

In contrast to these existing approaches, DSL is theoretically guaranteed to be asymptotically

unbiased and have valid confidence intervals, as we can clearly see in Figure 7. In practice,

this means that researchers can get valid statistical estimates regardless of the choice of the

underlying automated text annotation methods.

6 Practical Guide

In this section, we provide practical recommendations regarding the most frequently asked

questions. Given the space constraints, we offer additional, comprehensive practical guides in

Appendix L, including how to choose LLMs, how to use more complex sampling strategies (e.g.,

active learning), and what to do if the performance of LLM annotations is poor, among others.

6.1 Errors in Expert Annotations

In practice, expert annotation, which is defined in this paper as a procedure that acts as the

benchmark against which the quality of the automated text annotation is evaluated, can contain

errors. Completely random errors in expert annotations do not affect the validity of downstream

analyses with DSL. However, in some applications, users might worry that errors in expert

annotations can be systematic.

Importantly, concerns of such errors in expert annotations are far from new, and they equally

apply to almost all existing text-as-data methods, including any supervised machine learning

methods and any unsupervised learning methods that are validated by expert-reading of doc-

uments (Grimmer and Stewart, 2013). Thus, there already exist various strategies and recom-

mendations for handling errors and uncertainties in expert annotations (e.g., Benoit et al., 2009;

Hopkins and King, 2010; Mikhaylov et al., 2012), and researchers can straightforwardly apply

them to DSL as well.

Building on this literature, we recommend having multiple expert coders and implementing

the following strategies. First, we recommend prioritizing quality over quantity when it comes

to expert annotations. It is better to have high-quality expert annotations on a small number

of documents than to lower the quality to increase the number of expert-coded documents. In

particular, users can reduce the risk of non-random errors by having stricter disambiguation rules
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(e.g., all the coders re-annotate any text that has at least one disagreement). This expensive

high-quality annotation is not possible for a large number of documents, but it is extremely

valuable if it is done even for a small number of documents. Automated text annotation methods

like LLMs can provide the quantity. DSL allows researchers to combine these two complementing

annotation methods: high-quality, expensive expert annotations and lower-quality, large-scale

automated annotations.

Second, researchers can also empirically evaluate the robustness of statistical estimates to

errors in expert annotations. In particular, users can treat annotations from one expert coder as

if they were the only expert annotations and check whether and how much DSL estimates change

depending on which expert annotations are used. When the intercoder reliability between ex-

perts is low, and disagreements are systematic, DSL estimates will vary substantially across an-

notations from different expert coders. In this case, researchers have to re-assess a codebook and

disambiguate any systematic disagreement they have in expert annotations. Users can compute

the misclassification matrix (e.g., Mikhaylov et al., 2012) to guide disambiguation steps. When

the intercoder reliability between experts is high, and disagreements are non-systematic, DSL

estimates will be similar across annotations from different expert coders. Finally, when users

can justify modeling assumptions about errors, they can also apply simulation-based methods,

such as SIMEX (see, e.g., Hopkins and King, 2010; Mikhaylov et al., 2012).

6.2 What if LLM annotations are Very Good?

If LLM annotations have extremely high predictive performance, DSL is going to have small

standard errors because bias-correction terms are small (the second part of equation (4) is close

to zero), while maintaining statistical validity. However, as long as LLM annotations are not

perfect, even if they have excellent performance, the LLM-only estimation is not statistically

valid (as seen in our applications and simulations). So, DSL is preferred to the LLM-only

estimation even when LLM annotations have high predictive performance.18

6.3 Reporting Standards

To transparently report the DSL results, we recommend reporting the following three aspects

in the paper. (1) The specification of automated text annotation methods (e.g., the choice of

LLM and prompts used to predict labels), (2) sampling method for expert annotations and the

number of expert annotations (e.g., randomly sample 500 documents for expert annotations

with equal probabilities), and (3) the specification of the DSL model, as scholars typically

18In a hypothetical scenario when LLM annotations have no error at all, DSL is going to be

the same as the LLM-only estimation.
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report statistical models (e.g., we run the DSL linear regression where the dependent variable

is the tone of political ads and the independent variables are the Facebook dummy variable and

candidate-fixed effects).

6.4 Limitations

Finally, automated text annotation, in particular, the use of LLM annotations, is a rapidly

advancing technology. While we propose a generic method that can incorporate any automated

text annotation methods with any prediction error, it might sometimes be possible to derive

an application-specific automated text annotation method that can statistically guarantee com-

pletely random prediction errors or can model prediction errors. When researchers can justify

additional assumptions about how prediction errors arise in the automated text annotation step,

they can potentially get smaller standard errors than DSL. DSL is a general-purpose method

that is most useful when researchers want to avoid stringent assumptions about prediction errors

in automated text annotation methods.

7 Wide Applicability

While we so far focused on regression analyses in text-as-data applications, which are the most

common downstream analyses, the DSL framework can be used for a broader range of statistical

analyses in the social sciences. Our general framework is applicable to any application where

researchers use predictive methods to scale up measurements.

• Estimation of Category Proportions over Time or across Groups: Many scholars

are interested in estimating the proportion of all documents in each user-specified category

(e.g., Hopkins and King, 2010; Keith and O’Connor, 2018; Card and Smith, 2018; Jerzak

et al., 2023). For example, we might study how the proportion of censored documents

changes over time or how the proportion of social media posts containing hate speech

differs across groups, such as Democrats and Republicans. These questions can be analyzed

within the DSL framework. For instance, using whether a document is censored as the

outcome and time indicators as the independent variable in the DSL linear regression,

researchers can estimate how the proportion of censored documents changes over time.

• Causal Inference with Texts: An increasing number of scholars make causal inference

with textual data (Fong and Grimmer, 2021; Egami et al., 2022; Feder et al., 2022; Mozer

and Miratrix, 2023). DSL can be used in causal inference applications where the outcome,

treatment, or confounders are text-based. In randomized experiments, researchers can

use the DSL regression to perform the difference-in-means or covariate-adjusted linear
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regression for estimating the average treatment effect.19 In observational studies, under

corresponding causal identification assumptions, researchers can apply the DSL two-stage-

least squares for the instrumental variable design, the DSL local linear regression for

the regression discontinuity design, and the DSL two-way fixed effects estimator for the

difference-in-differences design.

• Statistical Analyses of Unstructured Data, e.g., Images, Audios, Videos: Social

scientists have begun to utilize a wider range of new data sources, such as image, audio, and

video (e.g., Knox and Lucas, 2021; Torres and Cantú, 2022; Tarr et al., 2023). Like the text-

as-data literature, researchers often use medium-specific automated annotation methods

(e.g., convolutional neural networks and recent foundation models) before analyzing such

annotated data in the main downstream statistical analyses. However, as in the automated

text annotation, they inevitably contain non-random prediction errors. DSL can be applied

to handle such prediction errors in image, audio, and video annotation tasks as well.

8 Concluding Remarks

In this paper, we propose a general framework for using recent advances in automated text an-

notation methods (e.g., LLMs) and, more generally, generative artificial intelligence (AI) in the

social sciences. The proposed framework guarantees statistical validity of downstream analyses,

without suffering from bias due to unknown non-random prediction errors in AI models.

Due to the recent rapid advances in AI, we can happily expect that new AI models will be

developed every month or even faster. This also means that we will continue to have a suite of

models that have high predictive performance but lack scientific and theoretical understanding

about their prediction errors and various biases (political, racial, gender, social, and so on).

However, the existing approaches (i.e., ignoring prediction errors) exactly need to justify how

prediction errors arise. Currently, researchers have to pretend that new AI models have com-

pletely random prediction errors, or they have to miss those recent advances. DSL overcomes

this tradeoff by incorporating a small number of high-quality, expensive expert annotations.

DSL allows users to incorporate any future and current AI models because we do not make any

assumptions about prediction errors. With DSL, researchers can always apply state-of-the-art

AI models to their social science studies, without worrying that prediction errors and biases in

19Previous studies (e.g., Fong and Grimmer, 2021; Egami et al., 2022) have clarified the

challenges of inferring a codebook and causal estimates from the same data, especially when

using unsupervised learning approaches. In contrast, this paper relies on a supervised learning

framework where a codebook is given by researchers rather than estimated by a model.
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such AI models might invalidate their scientific and statistical conclusions. We hope that this

paper provides a foundation for future work considering this exciting intersection of the social

sciences, machine learning, and AI.
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Torres, M. and Cantú, F. (2022). Learning to See: Convolutional Neural Networks for the

Analysis of Social Science Data. Political Analysis 30, 1, 113–131.

Wang, S., McCormick, T. H., and Leek, J. T. (2020). Methods for Correcting Inference based on

Outcomes Predicted by Machine Learning. Proceedings of the National Academy of Sciences

117, 48, 30266–30275.

35



Zhang, H. (2021). How using machine learning classification as a variable in regression leads to

attenuation bias and what to do about it. SocArXiv.

Ziems, C., Held, W., Shaikh, O., Chen, J., Zhang, Z., and Yang, D. (2023). Can Large Language

Models Transform Computational Social Science? arXiv preprint arXiv:2305.03514 .

36


	Title Page
	1 Introduction
	2 Automated Text Annotation
	2.1 Large Language Models as Text Classifier
	2.1.1 How to Use LLMs as Text Classifiers
	2.1.2 Empirical Illustration of LLM Annotation

	2.2 Potential Risks of LLM Annotation

	3 Predicted Text Labels as Variables in Downstream Analyses
	3.1 Setup and Quantity of Interest
	3.2 Current Practice: Directly Using Predicted Labels as Variables
	3.3 The Methodological Challenges of the Current Practice
	3.4 Simulation Study

	4 Design-based Supervised Learning
	4.1 Overview
	4.2 Assumption: Design-based Sampling
	4.2.1 Assumptions We Do Not Make

	4.3 DSL Regression
	4.3.1 Building Intuition with Estimation of Category Proportion
	4.3.2 DSL Linear Regression
	4.3.3 Generalization of DSL


	5 Empirical Applications
	5.1 Text as Outcome: fowler2021political
	5.1.1 Setup
	5.1.2 Results
	5.1.3 Power Analysis

	5.2 Text as Independent Variables: pan2018concealing

	6 Practical Guide
	6.1 Errors in Expert Annotations
	6.2 What if LLM annotations are Very Good?
	6.3 Reporting Standards
	6.4 Limitations

	7 Wide Applicability
	8 Concluding Remarks

