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Abstract

External validity of causal findings is a focus of long-standing debates in the social

sciences. While the issue has been extensively studied at the conceptual level, in prac-

tice, few empirical studies have explicit analysis aimed towards externally valid inferences.

In this article, we make three contributions to improve empirical approaches for exter-

nal validity. First, we propose a formal framework that encompasses four dimensions of

external validity; X-, T -, Y -, and C-validity (populations, treatments, outcomes, and con-

texts). The proposed framework synthesizes diverse external validity concerns. We then

distinguish two goals of generalization. To conduct effect-generalization — generalizing

the magnitude of causal effects — we introduce three estimators of the target population

causal effects. For sign-generalization — generalizing the direction of causal effects — we

propose a novel multiple-testing procedure under weaker assumptions. We illustrate our

methods through field, survey, and lab experiments as well as observational studies.
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1 Introduction

Over the last few decades, social scientists have developed and applied a host of statistical

methods to make valid causal inference, known as a credibility revolution. This trend has

primarily focused on internal validity — researchers aim to unbiasedly estimate causal effects

within a study, without making strong assumptions. One of the most important long-standing

methodological debates is about external validity — how scientists can generalize causal findings

beyond a specific study.

While concepts of external validity are widely discussed in the social sciences, there are few

empirical applications where researchers explicitly incorporate external validity into the design

or analysis. Only 11% of all experimental studies and 13% of all observational causal studies

published in the American Political Science Review from 2015 to 2019 contain a formal analysis

of external validity in the main text, and none discuss conditions under which generalization

is credible.1 The lack of empirical approaches for external validity has remained, potentially

because social science studies have diverse goals and concerns surrounding external validity,

and yet, most existing methodologies have primarily focused on the subset of threats that are

statistically more tractable. In many applications, important concerns about external validity

receive no empirical evaluation.

In this article, we develop a framework and methodologies to improve empirical approaches

for external validity. Building on the classical experimental design literature (Campbell and

Stanley, 1963; Shadish, Cook and Campbell, 2002), we begin by proposing a unified causal

framework that decomposes external validity into four components; X-, T -, Y -, and C-validity

(populations, treatments, outcomes, and contexts/settings) (Section 3). With the proposed

framework, we formally synthesize a variety of external validity concerns researchers face in

practice and relate them to causal assumptions; to name a few examples, convenience samples

(X-validity), differences in treatment implementations (T -validity), survey versus behavioral

1See Appendix K for more details on our literature review. A review paper by Findley,

Kikuta and Denly (2020) also finds that only an exceptional few papers contained a dedicated

external validity discussion.
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outcomes (Y -validity), and differences in causal mechanisms across time, geography, and/or

institutions (C-validity). We clarify conditions under which analysts can and cannot account

for each type of validity.

After researchers identify the most relevant dimensions of external validity using our pro-

posed framework, they can determine the goal of the external validity analysis: effect- or

sign-generalization. Effect-generalization considers how to generalize the magnitude of causal

effects, and sign-generalization aims to assess whether the direction of causal effects is gen-

eralizable. The former goal is important when researchers want to generalize the substantive

or policy impact of treatments. The latter is relevant when analysts wish to test substantive

theories that have observable implications only on the direction of treatment effects but not

on the exact magnitude. Sign-generalization is also sometimes a practical compromise when

effect-generalization, which requires stronger assumptions, is not feasible.

To enable effect-generalization, we introduce three classes of estimators and clarify the

assumptions required by each (Section 5). Weighting-based estimators adjust for selection into

experiments, outcome-based estimators control for treatment effect heterogeneity, and doubly

robust estimators combine both to mitigate the risk of model misspecification.

In Section 6, we propose a new approach to sign-generalization. It is increasingly common

to include variations in relevant dimensions of external validity at the design stage, e.g., mea-

suring multiple outcomes, treatments, contexts and diverse populations within each study. We

formalize this common practice as the design of purposive variations and discuss why and when

it is effective for testing the generalizability of the sign of causal effects. By extending a partial

conjunction test (Benjamini and Heller, 2008; Karmakar and Small, 2020), we then propose

a novel sign-generalization test that combines purposive variations to quantify the extent of

external validity. Because the design of purposive variations is already common in practice, ap-

plication of the sign-generalization test can provide formal measures of external validity, while

requiring little additional practical cost.

To focus on issues of external validity, we use three randomized experiments, covering field,

survey, and lab experiments, as our motivating applications (Section 2). Using them, we il-

lustrate how to implement our proposed methods and provide practical recommendations in
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Section 7 and Appendix C. All of our methods can be implemented via the companion R pack-

age evalid. Finally, in Section 8, we discuss severeral key extensions. First, while the primary

concern in observational studies is about internal validity, external validity is equally important

for experimental and observational studies (Westreich et al., 2019). We discuss how to analyze

the same four dimensions of external validity in observational studies. Second, we discuss how

our proposed methods are related to and helpful for meta-analysis and recent efforts toward

scientific replication of experiments, such as the EGAP Metaketa initiative.

Our contributions are threefold. First, we formalize all four dimensions of external valid-

ity within the potential outcomes framework (Neyman, 1923; Rubin, 1974). Existing causal

methods using potential outcomes have primarily focused on changes in populations, i.e. X-

validity (Imai, King and Stuart, 2008; Cole and Stuart, 2010). While a typology of external

validity and different research goals of generalization are not new and have been discussed in

the classical experimental design literature (Campbell and Stanley, 1963; Shadish, Cook and

Campbell, 2002), this literature has focused on providing conceptual clarity and did not use a

formal causal framework. We relate each validity type to explicit causal assumptions, which

enables us to develop statistical methods that researchers can use in practice for generalization.

Second, for effect-generalization of X-validity, we build on a large existing literature (Tipton,

2013; Hartman et al., 2015; Kern et al., 2016; Dahabreh et al., 2019) and provide practical

guidance. To account for changes in populations and contexts together, i.e. X- and C-validity,

we use identification results from the causal diagram approach (Bareinboim and Pearl, 2016)

and develop new estimators in Section 5. The third and main methodological contribution is to

provide a formal approach to sign-generalization. While this important goal has been informally

and commonly discussed in practice, to our knowledge, no method has been available. Finally,

our work is distinct from and complementary to a recent review paper by Findley, Kikuta and

Denly (2020). The main goal of their work is to review how to evaluate external validity and

how to report such evaluation in papers. In contrast, our paper focuses on how to improve

external validity by proposing concrete methods (e.g., estimators and tests) that researchers

can use in practice to implement effect- or sign-generalization.
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2 Motivating Empirical Applications

2.1 Field Experiment: Reducing Transphobia

Prejudice can negatively impact social, political, and health outcomes of outgroups experiencing

discrimination. Yet, the prevailing literature has found intergroup prejudices highly resistant

to change. In a recent study, Broockman and Kalla (2016) use a field experiment to study

whether and how much a door-to-door canvassing intervention can reduce prejudice against

transgender people. It was conducted in Miami-Dade County, Florida, in 2015 among voters

who answered a pre-experiment baseline survey. They randomly assigned canvassers to either

encourage voters to actively take the perspective of transgender people (“perspective-taking”)

or have a placebo-conversation with respondents. To measure attitudes towards transgender

people as outcome variables, they recruited respondents to four waves of follow-up surveys.

The original authors find that the intervention involving a single approximately ten-minute

conversation substantially reduced transphobia, and the effects persisted for three months.

2.2 Survey Experiment: Partisan-Motivated Reasoning

Scholars have been interested in how citizens perceive reality in ways that reflect well on their

party, called partisan-motivated reasoning. Extending this literature, Bisgaard (2019) theo-

rizes that partisans can acknowledge the same economic facts, and yet they rationalize reality

using partisan-motivated reasoning. Those who support an incumbent party engage in blame-

avoidant (credit-seeking) reasoning in the face of negative (positive) economic information, and

opposition supporters behave conversely. To test this theory, the original author ran a total of

four survey experiments across two countries, the United States and Denmark, to investigate

whether substantive findings are consistent across different contexts where credit attribution

of economic performance behaves differently. In each experiment, he recruited representative

samples of the voting-age population, and then randomly assigned subjects to receive either

positive or negative news about changes in GDP. He measured how respondents update their

economic beliefs and how they attribute responsibility for the economic changes to a ruling

party. Across four experiments, he finds support for his hypotheses.
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2.3 Lab Experiment: Effect of Emotions on Dissent in Autocracy

Many authoritarian countries employ various frightening acts of repression to deter dissent. To

unpack the psychological underpinnings of this authoritarian repression strategy, Young (2019)

asks, “Does the emotion of fear play an important role in shaping citizens’ willingness to dissent

in autocracy, and if so, how?” (p. 140). She theorizes that fear makes citizens more pessimistic

about the risk of repression and, consequently, less likely to engage in dissent. To test this

theory, the original author conducted a lab experiment in Zimbabwe in 2015. She recruited a

hard-to-reach population of 671 opposition supporters using a form of snowball sampling. The

experimental treatment induced fear using an experimental psychology technique called the au-

tobiographical emotional memory task (AEMT); at its core, an enumerator asks a respondent to

describe a situation that makes her relaxed (control condition), or afraid (treatment condition).

As outcome variables, she measured propensity to dissent with a host of hypothetical survey

outcomes and real-world, low-stakes behavioral outcomes. She finds that fear negatively affects

dissent decisions, particularly through pessimism about the probability that other opposition

supporters will also engage in dissent.

3 Formal Framework for External Validity

In external validity analysis, we ask whether causal findings are generalizable to other (1)

populations, (2) treatments, (3) outcomes, and (4) contexts (settings) of theoretical interest.

We incorporate all four dimensions into the potential outcomes framework (Neyman, 1923;

Rubin, 1974) by extending the classical experimental design literature (Shadish, Cook and

Campbell, 2002). We will refer to each aspect as X-, T -, Y - and C-validity, where X represents

pre-treatment covariates of populations, T treatments, Y outcomes, and C contexts. We will

use an experimental study as an example because it helps us focus on issues of external validity.

We discuss observational studies in Section 8.3.
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3.1 Setup

Consider a randomized experiment with a total of n units, each indexed by i ∈ {1, . . . , n}. We

use P to denote this experimental sample, within which a treatment variable Ti is randomly

assigned to each respondent. For notational clarity, we focus on a binary treatment Ti ∈ {0, 1},

but the same framework is applicable to categorical and continuous treatments with appropriate

notational changes. Researchers measure outcome variable Yi. We use Ci to denote a context

to which unit i belongs. For example, the field experiment by Broockman and Kalla (2016)

was conducted in Miami-Dade County in Florida in 2015, and Ci = (Miami, 2015).

We then define Yi(T = t, c) to be the potential outcome variable of unit i if the unit

were to receive the treatment Ti = t within context Ci = c where t ∈ {0, 1}. In contrast

to the standard potential outcomes, our framework explicitly shows that potential outcomes

also depend on context C. This allows for the possibility that causal mechanisms of how the

treatment affects the outcome can vary across contexts.

Under the random assignment of the treatment variable T within the experiment, we can

use simple estimators, such as difference-in-means, to estimate the sample average treatment

effect (SATE).

SATE ≡ EP{Yi(T = 1, c)− Yi(T = 0, c)}. (1)

This represents the causal effect of treatment T on outcome Y for the experimental population P

in context C = c. The main issue of external validity is that researchers are not only interested

in this within-experiment estimand but also whether causal conclusions are generalizable to

other populations, treatments, outcomes, and contexts.

We define the target population, treatment, outcome, and context to be the targets against

which external validity of a given experiment is evaluated. These targets are defined by the

goal of the researcher or policy-maker. For example, Broockman and Kalla (2016) conducted an

experiment with voluntary participants in Miami-Dade County in Florida. For X-validity, the

target population could be adults in Miami, in Florida, in the U.S., or any other populations

of theoretical interest. The same question applies to other dimensions, i.e., T -, Y -, and C-

validity. Specifying targets is equivalent to clarifying studies’ scope conditions, and thus, this
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choice should be guided by substantive research questions and underlying theories of interest

(Wilke and Humphreys, 2020).

Formally, we define the target population average treatment effect (T-PATE) as follows.

T-PATE ≡ EP∗{Y ∗i (T ∗ = 1, c∗)− Y ∗i (T ∗ = 0, c∗)}, (2)

where ∗ denotes the target of each dimension. Note that the methodological literature often

defines the population average treatment effect by focusing only on the difference in populations

P and P∗, but our definition of the T-PATE explicitly considers all four dimensions.

Therefore, we formalize a question of external validity as follows. “Would we obtain the same

causal conclusion (e.g., the magnitude or sign of causal effects) if we use the target population

P∗, target treatment T ∗, target outcome Y ∗, and target context c∗?” Most importantly, external

validity is defined with respect to specific targets researchers specify. This is essential because no

experiment is universally externally valid; a completely different experiment should, of course,

return a different result. Therefore, to empirically evaluate external validity of experiments in

a fair way, both analysts and evaluators should clarify the targets against which they evaluate

experiments. If the primary goal of the experiment is theory testing, these targets can be

abstract theoretical concepts (e.g., incentives). On the other hand, if the goal is to generate

policy recommendations for a real-world intervention, these targets are often more concrete.

3.2 Typology of External Validity

Building on a typology that has been influential conceptually (Campbell and Stanley, 1963), we

provide a formal way to analyze practical concerns about external validity with the potential

outcomes framework introduced in the previous section. We decompose external validity into

four components, X-, T -, Y -, and C-validity, and we show how practical concerns in each

dimension are related to fundamental causal assumptions. Table 1 previews a summary of the

four dimensions.

3.2.1 X-validity

The difference in the composition of units in experimental samples and the target population is

arguably the most well-known problem in the external validity literature (Imai, King and Stuart,
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Practical Concerns (examples) Causal Assumptions (formalization)

X-validity
Convenience samples, Ignorability of Sampling

Survey non-response, Attrition and Treatment Effect Heterogeneity (Assumption 1)

T-validity
Realistic treatments, Bundled treatments,

Ignorable Treatment-Variations (Assumption 2)
Difference in implementations

Y-validity
Behavioral or hypothetical survey outcomes,

Ignorable Outcome-Variations (Assumption 3)
Short- or long-term outcomes

C-validity
Mechanisms differ across time,

Contextual Exclusion Restriction (Assumption 4)
geography, political institutions, and so on

Table 1: Summary of Typology.

2008). When relying on convenience samples or non-probability samples, such as undergraduate

samples and online samples (e.g., Mechanical Turk and Lucid), many researchers worry that

estimated causal effects for such samples may not generalize to other target populations.

Bias due to the difference between experimental sample P and the target population P∗

can be addressed when selection into the experiment and treatment effect heterogeneity are

unrelated to each other after controlling for pre-treatment covariates X (Cole and Stuart,

2010).

Assumption 1 (Ignorability of Sampling and Treatment Effect Heterogeneity)

Yi(T = 1, c)− Yi(T = 0, c) ⊥⊥ Si | Xi (3)

where Si ∈ {0, 1} indicates whether units are sampled into the experiment or not.

The formal expression synthesizes two common approaches for addressing X-validity (Egami

and Hartman, 2021). The first approach aims to account for how subjects are sampled into

the experiment, including the common practice of using sampling weights (Miratrix et al.,

2018). Random sampling is a well-known special case where no explicit sampling weights are

required. The second common approach is based on treatment effect heterogeneity (e.g., Kern

et al., 2016). If analysts can adjust for all variables explaining treatment effect heterogeneity,

Assumption 1 holds. A special case is when treatment effects are homogeneous: when true, the

difference between the experimental sample and the target population does not matter, and no
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adjustment is required. Combining the two ideas, a general approach for X-validity is to adjust

for variables that affect selection into an experiment and moderate treatment effects. The

required assumption is violated when unobserved variables affect both sampling and treatment

effect heterogeneity.

3.2.2 T -validity

In social science experiments, due to various practical and ethical constraints, the treatment

implemented within an experiment is not necessarily the same as the target treatment that

researchers are interested in for generalization.

In field experiments, this concern often arises due to difference in implementations. For

example, when scaling up the perspective-taking treatment developed in Broockman and Kalla

(2016), researchers might not be able to partner with equally established LGBT organizations

and to recruit canvassers of similar quality. Many field experiments have found that details of

implementation have important effects on treatment effectiveness.

In survey experiments, analysts are often concerned with whether randomly assigned infor-

mation is realistic and whether respondents process it as they would do in the real world. For

instance, Bisgaard (2019) designs treatments by mimicking contents of newspaper articles that

citizens would likely read in everyday life, which are the target treatments.

In lab experiments, this concern is often about bundled treatments. To test theoretical

mechanisms, it is important to experimentally activate a specific mechanism. However, in

practice, randomized treatments often act as a bundle, activating several mechanisms together.

For instance, Young (2019) acknowledges that “[a]lthough the AEMT [the treatment in her

experiment] is one of the best existing ways to induce a specific targeted emotion, in practice it

tends to induce a bundle of positive or negative emotions” (p. 144). In this line of discussion,

researchers view treatments that activate specific causal mechanisms as the target and consider

an assigned treatment as a combination of multiple target treatments. The concern is that

individual effects cannot be isolated because each target treatment is not separately randomized.

While the target treatments differ depending on the types of experiments and corresponding

research goals, practical challenges discussed above can be formalized as concerns over the same
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causal assumption. Formally, bias due to concerns of T -validity is zero when the treatment-

variation is irrelevant to treatment effects.

Assumption 2 (Ignorable Treatment-Variations)

EP [Yi(T = 1, c)− Yi(T = 0, c)] = EP [Yi(T
∗ = 1, c)− Yi(T ∗ = 0, c)]. (4)

It states that the assigned treatment T and the target treatment T ∗ induce the same average

treatment effects. For example, the causal impact of the perspective-taking intervention is the

same regardless of whether canvassers are recruited by established LGBT organizations or not.

Most importantly, a variety of practical concerns outlined above are about potential viola-

tions of this same assumption. Thus, we develop a general method — a new sign-generalization

test in Section 6 — that is applicable to concerns about T -validity, regardless of whether they

arise in field, survey, or lab experiments.

3.2.3 Y -validity

Concerns of Y -validity arise when researchers cannot measure the target outcome in exper-

iments. For example, in her lab experiment, Young (2019) could not measure actual dissent

behaviors, such as attending opposition meetings, for ethical and practical reasons. Instead, she

relies on a low-risk behavioral measure of dissent (wearing a wristband with a pro-democracy

slogan) and a host of hypothetical survey measures that span a range of risk levels.

Similarly, in many experiments, even when researchers are inherently interested in behavioral

outcomes, they often need to use hypothetical survey-based outcome measures, e.g., support for

hypothetical immigrants, policies, and politicians. In such cases, Y -validity analysis might ask

whether causal effects learned with these hypothetical survey outcomes are informative about

causal effects on the support for immigrants, policies, and politicians in the real world.

The difference between short-term and long-term outcomes is also related to Y -validity. In

many social science experiments, researchers can only measure short-term outcomes and not

the long-term outcomes of main interest.

Formally, a central question is whether outcome measures used in an experimental study

are informative about the target outcomes of interest. Bias due to the difference in an outcome
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measured in the experiment Y and the target outcome Y ∗ is zero when the outcome-variation

is irrelevant to treatment effects.

Assumption 3 (Ignorable Outcome-Variations)

EP [Y ∗i (T = 1, c)− Y ∗i (T = 0, c)] = EP [Yi(T = 1, c)− Yi(T = 0, c)]. (5)

This assumption substantively means that the average causal effects are the same for outcomes

measured in the experiment Y and for the target outcomes Y ∗. The assumption naturally holds

if researchers measure the target outcome in the experiment, i.e., Y = Y ∗. For example, many

Get-Out-of-the-Vote experiments in the U.S. satisfy this assumption by directly measuring voter

turnout with administrative records (e.g., Gerber and Green, 2012).

Thus, when analyzing Y -validity, researchers should consider how causal effects on the

target outcome relate to those estimated with outcome measures in experiments. In Section 6,

we discuss how to address this common concern about Assumption 3 by using multiple outcome

measures.

We note that there are many issues about measurement that are related to but different from

Y -validity, such as measurement error, social desirability bias, and most importantly, construct

validity. Following Morton and Williams (2010), we argue that high construct validity helps

Y -validity, but it is not sufficient. This is because the target outcome is often chosen based on

theory, and thus, experiments with high construct validity are more likely to be externally valid

in terms of outcomes. However, construct validity does not imply Y -validity. For example, as

repeatedly found in the literature, practical differences in outcome measures (e.g., outcomes

measured 1 year or 2 years after administration of a treatment) are often indistinguishable

from a theoretical perspective, and yet, they can induce large variation in treatment effects.

We also provide further discussion on the relationship between external validity and other

related concepts in Appendix G.

3.2.4 C-validity

Do experimental results generalize from one context to another context? This issue of C-validity

is often at the heart of debates in external validity analysis (e.g., Deaton and Cartwright,

11



2018). Social scientists often discuss geography and time as important contexts. For example,

researchers might be interested in understanding whether and how we can generalize Broockman

and Kalla (2016)’s study from Miami in 2015 to another context, such as New York City in

2020. C-validity is challenging because a randomized experiment is done in one context c, and

researchers often want to generalize or transport experimental results to another context c∗,

where they did not run the experiment.

Even though this concern about contexts has a long history (Campbell and Stanley, 1963),

to our knowledge, the first general formal analysis of C-validity is given by Bareinboim and Pearl

(2016) using a causal graphical approach. Building on this emerging literature, we formalize

C-validity within the potential outcomes framework introduced in Section 3.1.

We define C-validity as a question about mechanisms; how do treatment effects on the

same units change across contexts? For example, in Broockman and Kalla (2016), even the

same person might be affected differently by the perspective-taking intervention depending on

whether she lives in New York City in 2020, or in Miami in 2015. Formally,

Yi(T = 1, c)− Yi(T = 0, c)︸ ︷︷ ︸
Causal effect for unit i in context c

6= Yi(T = 1, c∗)− Yi(T = 0, c∗)︸ ︷︷ ︸
Causal effect for unit i in context c∗

In order to generalize experimental results to another unseen context, we need to account

for variables related to mechanisms through which contexts affect outcomes and moderate

treatment effects. We refer to such variables as context-moderators. Specifically, researchers

need to assume that contexts affect outcomes only through measured context-moderators. This

implies that the causal effect for a given unit will be the same regardless of contexts, as long

as the values of the context-moderators are the same. For example, in Broockman and Kalla

(2016), the context-moderator could be the number of transgender individuals living in each

unit’s neighborhood. Then, analysts might assume that the causal effect for a given unit will

be the same regardless of whether she lives in NYC in 2020 or in Miami in 2015, as long as we

adjust for the number of transgender individuals living in her neighborhood.

We formalize this assumption as the contextual exclusion restriction (Assumption 4), which

states that the context variable Ci has no direct causal effect on the outcome once fixing
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context-moderators. This name reflects its similarity to the exclusion restriction well known in

the instrumental variable literature.

Assumption 4 (Contextual Exclusion Restriction)

Yi(T = t,M = m, c) = Yi(T = t,M = m, c∗), (6)

where the potential outcome Yi(T = t, c) is expanded with the potential context-moderators

Mi(c) as Yi(T = t, c) = Yi(T = t,Mi(c), c), and then, Mi(c) is fixed to m. We define Mi to be a

vector of context-moderators, and thus, researchers can incorporate any number of variables to

satisfy the contextual exclusion restriction. See Appendix H.2 for the proof of the identification

of the T-PATE under this contextual exclusion restriction and other standard identification

assumptions.

Most importantly, this assumption implies that the causal effect for a given unit will be

the same regardless of contexts, as long as the values of the context-moderators are the same.

Formally,

Yi(T = 1,M = m, c)− Yi(T = 0,M = m, c)︸ ︷︷ ︸
Causal effect for unit i with M = m in context c

= Yi(T = 1,M = m, c∗)− Yi(T = 0,M = m, c∗)︸ ︷︷ ︸
Causal effect for unit i with M = m in context c∗

This assumption is plausible when the measured context-moderators capture all the reasons why

causal effects vary across contexts. In other words, after conditioning on measured context-

moderators, there is no remaining context-level treatment effect heterogeneity. In contrast,

if there are other channels through which contexts affect outcomes and moderate treatment

effects, the assumption is violated.

Several points about Assumption 4 are worth clarifying. First, there is no general ran-

domization design that makes Assumption 4 true. This is similar to the case of instrumental

variables in that the exclusion restriction needs justification based on domain knowledge even

when instruments are randomized (Angrist, Imbens and Rubin, 1996). Second, in order to avoid

post-treatment bias, context-moderators Mi cannot be affected by treatment Ti. In Broockman

and Kalla (2016), it is plausible that the door-to-door canvassing interventions do not affect

the number of transgender people in one’s neighborhood, a context-moderator.
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Finally, we clarify the subtle yet important difference between X- and C-validity. Most

importantly, the same variables may be considered as issues of X- or C-validity depending

on the nature of the problem and data at hand. For example, suppose we conduct a GOTV

experiment in an electorally safe district in Florida. If we want to generalize this experimental

result to another district in Florida that is electorally competitive, the competitiveness in the

district is a question about C-validity. This is because our experimental data does not contain

any data from an electorally competitive district, which defines the target context. However,

suppose we conduct a state-wide experiment in Florida where some districts are electorally

competitive and others are safe. Then, if we want to generalize this result to another state,

e.g., the state of New York, where the proportion of electorally competitive districts differ,

the electoral competitiveness of districts can be addressed as the X-validity problem.2 This is

because our experimental data has both electorally competitive and safe districts, and what

differs across the two states is their distribution. This example shows that whether a given

variable should be considered as an X- or C-validity question depends on the application.

In general, X-validity is a question about the representativeness of the experimental data.

Thus, X-validity is of primary concern when we ask whether the distribution of certain variables

in the experiment is similar to the target population distribution of the same variables. In

contrast, C-validity is a question about transportation (Bareinboim and Pearl, 2016) to a new

context. Thus, C-validity is the main concern when we ask whether the experimental result is

generalizable to a context where no experimental data exists.

4 The Proposed Approach toward External Validity: Outline

In Section 3, we developed a formal framework and discussed concerns for external validity. In

this section, we outline our proposed approach toward external validity, reserving details of our

methods to Section 5 (effect-generalization) and Section 6 (sign-generalization).

2To generalize experimental results from the state of Florida to the state of New York, we

have to consider other context moderators based on Assumption 4 as well. Here, we focus only

on electoral competitiveness of districts as an example.
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The first step of external validity analysis is to ask which dimensions of external validity

are most relevant in one’s application. For example, in the field experiment by Broockman and

Kalla (2016), we primarily focus on X-validity (their experimental sample was restricted to

Miami-Dade registered voters who responded to a baseline survey) and Y -validity (the original

authors are interested in effects on both short- and long-term outcomes), while we also discuss all

four dimensions in Appendix C. We also provide additional examples of how to identify relevant

dimensions in Section 7 and Appendix C. Regardless of the type of experiment, researchers

should consider all four dimensions of external validity and identify relevant ones. We refer

readers to Section 3 on the specifics of how to conceptualize each dimension.

Once relevant dimensions are identified, analysts should decide the goal of external validity

analysis, whether effect- or sign-generalization. Effect-generalization — how to estimate the T-

PATE, i.e., generalizing the magnitude of the causal effect — is a central concern for randomized

experiments that have policy implications. For example, in the field experiment by Broockman

and Kalla (2016), effect-generalization is essential as cost-benefit considerations will be affected

by the actual effect size. Sign-generalization — evaluating whether the sign of causal effects is

generalizable — is relevant when researchers are testing theoretical mechanisms, and substantive

theories have observable implications on the direction or the order of treatment effects but not

on the effect magnitude. For example, our motivating examples of Bisgaard (2019) and Young

(2019) explicitly write main hypotheses in terms of the sign of causal effects.

Given the goal, the next step is to ask whether the specified goal is achievable by evaluating

the assumptions required for each goal in relevant external validity dimensions. Assumptions

required for effect-generalization include Assumptions 1–4 detailed in Section 3, while Section 6

describes assumptions necessary for sign-generalization. In some settings, researchers can design

experiments such that required assumptions are plausible, which is often the preferred approach.

Importantly, even if effect-generalization is infeasible, sign-generalization might be possible in

a wide range of applications as it requires much weaker assumptions. Thus, sign-generalization

is also sometimes a practical compromise when effect-generalization is not feasible.

We emphasize that, even if external validity concerns are acute, credible effect- or sign-

generalization might be impossible given the design of the experiment, available data, and the
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Figure 1: The Proposed Approach toward External Validity.

nature of the problem. In such cases, we recommend that researchers clarify which dimensions

of external validity are most concerning and why effect- and sign-generalization are not possible

(e.g., required assumptions are untenable, or required data on target populations, treatments,

outcomes, or contexts are not available).

In Sections 5 and 6, we discuss how to conduct effect- and sign-generalization, respectively,

when researchers can credibly justify the required assumptions. Our proposed workflow is

summarized in Figure 1, and we refer readers there for a holistic view of our approach toward

external validity in practice.

5 Effect-Generalization

In this section, we discuss how to conduct effect-generalization — including how to identify

and estimate the T-PATE. This goal is most relevant for randomized experiments that aim to

make policy recommendations. To keep the exposition clear, we first consider each dimension

separately to highlight the difference in required assumptions and available solutions (we discuss

how to address multiple dimensions together in Section 8.1).

For X- and C-validity, we start by asking whether effect-generalization is feasible by evalu-

ating required assumptions (Assumption 1 for X-validity, and Assumption 4 for C-validity). If
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Figure 2: Summary of Effect-Generalization.
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the required assumptions hold, researchers can employ three classes of estimators — weighting-

based, outcome-based, and doubly robust estimators. We provide practical guidance on how to

choose an estimator in Section 5.1.4. Importantly, because the required assumptions are often

strong, credible effect-generalization might be impossible. In such cases, sign-generalization

might still be feasible as it requires weaker assumptions (see Section 6).

For T - and Y -validity, we argue the required assumptions are much more difficult to justify

after experiments are completed. Therefore, we emphasize the importance of designing exper-

iments such that their required assumptions (Assumptions 2 and 3) are plausible by designing

treatments and measuring outcomes as similar as possible to their targets. We also highlight

that sign-generalization in Section 6 is more appropriate for addressing T - and Y -validity when

researchers cannot modify their experiment to satisfy the required assumptions.

Our proposed approach is summarized in Figure 2, separately for X- and C-validity and T -

and Y -validity.

5.1 X-validity: Three Classes of Estimators

Researchers need to adjust for differences between experimental samples and the target popu-

lation to address X-validity (Assumption 1). We provide formal definitions of estimators and

technical details in Appendix H.2.

5.1.1 Weighting-based Estimator

The first is a weighting-based estimator. The basic idea is to estimate the probability that

units are sampled into the experiment, which is then used to weight experimental samples to

approximate the target population. A common example is the use of survey weights in survey

experiments.

Two widely-used estimators in this class are (1) an inverse probability weighted (IPW)

estimator (Cole and Stuart, 2010), and (2) an ordinary least squares estimator with sampling

weights (weighted OLS). Without weights, these estimators are commonly used for estimating

the SATE, i.e., causal effects within the experiment. When incorporating sampling weights,

these estimators are consistent for the T-PATE under Assumption 1. Both estimators also

require a modeling assumption that sampling weights are correctly specified.

18



5.1.2 Outcome-based Estimator

While the weighting-based estimator focuses on the sampling process, we can also adjust for

treatment effect heterogeneity to estimate the T-PATE (e.g., Kern et al., 2016). A general two-

step estimator is as follows. First, we estimate outcome models for the treatment and control

groups, separately, in the experimental data. In the second step, we use the estimated models

to predict potential outcomes for the target population data.

Formally, in the first step, we estimate the outcome model ĝt(Xi) ≡ Ê(Yi | Ti = t,Xi, Si = 1)

for t ∈ {0, 1} where Si = 1 indicates an experimental unit. This outcome model can be as simple

as ordinary least squares, or rely on more flexible estimators. In the second step, for unit j

in the target population data P∗, we predict its potential outcome Ŷj(t) = ĝt(Xj), and thus,

T̂-PATEout = 1
N

∑
j∈P∗

(
Ŷj(1)− Ŷj(0)

)
, where the sum is over the target population data P∗,

and N is the size of the target population data.

It is worth re-emphasizing that this estimator requires Assumption 1 for identification of

the T-PATE, and it also assumes the outcome models are correctly specified.

5.1.3 Doubly Robust Estimator

Finally, we discuss a class of doubly robust estimators, which reduces the risk of model mis-

specification common in the first two approaches (Robins, Rotnitzky and Zhao, 1994; Dahabreh

et al., 2019). Specifically, to use weighting-based estimators, we have to assume the sampling

model is correctly specified (the pink area in Figure 3 (a)). Similarly, outcome-based estimators

assume the correct outcome model (the orange area). In contrast, doubly robust estimators

are consistent for the T-PATE as long as either the outcome model or the sampling model is

correctly specified; furthermore, analysts need not know which one is, in fact, correct. Figure 3

(b) shows that the doubly robust estimator is consistent in much wider applications (the gray

area in Figure 3 (b)). Therefore, this estimator significantly relaxes modeling assumptions of

the previous two methods. While they weaken modeling assumptions, we restate that doubly

robust estimators also require Assumption 1 for identification of the T-PATE.

We now introduce the augmented IPW estimator (AIPW) in this class (Robins, Rotnitzky

and Zhao, 1994; Dahabreh et al., 2019), which synthesizes weighting-based and outcome-based
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(a) Weighting- and Outcome-based Estimators:

Consistent only in each circle

(b) Doubly Robust Estimator:

Consistent in the union of circles

Figure 3: Properties of Doubly Robust Estimator. Note: The doubly robust estimator is
consistent as long as the sampling or outcome model is correctly specified (gray area in (b)).

estimators we discussed so far.

T̂-PATEAIPW =

∑
i∈P πiTi{Yi − ĝ1(Xi)}∑

i∈P πiTi
−
∑

i∈P πi(1− Ti){Yi − ĝ0(Xi)}∑
i∈P πi(1− Ti)︸ ︷︷ ︸

Weighting-based Estimator using Residuals

+
1

N

∑
j∈P∗

{ĝ1(Xj)− ĝ0(Xj)}︸ ︷︷ ︸
Outcome-based Estimator

,

where πi is the sampling weight of unit i. ĝt(·) is an outcome model estimated in the experi-

mental data. The first two terms are the IPW estimator based on residuals Yi − ĝt(Xi), and

the last term is equal to the outcome-based estimator.

5.1.4 How to choose a T-PATE estimator

In practice, researchers often do not know the true model for the sampling process (e.g., when

using online panels or work platforms) or treatment effect heterogeneity. For this reason, we

recommend doubly robust estimators to mitigate the risk of model misspecification, whenever

possible. There are, however, scenarios when the alternative classes of estimators may be more

appropriate. In particular, the weighted OLS can incorporate pre-treatment covariates that

are only measured in the experimental sample, which can greatly increase the precision in the

estimation of the T-PATE (see Section 7.1), while this estimator requires correctly specified

sampling weights. As long as treatment effect heterogeneity is limited, the outcome-based

estimator is also appropriate, especially when variance of sampling weights is large, which is

20



exactly the settings where the other two estimators tend to have large standard errors.

5.2 X- and C-validity Together

In external validity analysis, concerns over X- and C-validity often arise together. This is

because when we consider a target context different from the experimental context, both un-

derlying mechanisms and populations often differ. To account for X- and C-validity together,

we propose new estimators by generalizing sampling weights πi × θi and outcome models g(·).

π̂i ≡
1

P̂r(Si = 1 | Ci = c,Mi,Xi)︸ ︷︷ ︸
Conditional sampling weights

, and θ̂i ≡
P̂r(Ci = c∗ |Mi,Xi)

P̂r(Ci = c |Mi,Xi)︸ ︷︷ ︸
Difference in the distributions

across contexts

ĝt(Xi,Mi) ≡ Ê(Yi | Ti = t,Xi,Mi, Si = 1, Ci = c)︸ ︷︷ ︸
Outcome model using both Xi and Mi

, for t ∈ {0, 1},

where Xi are covariates necessary for Assumption 1 and Mi are context-moderators necessary

for Assumption 4.

π̂i is the same as sampling weights used for X-validity, but it should be multiplied by θ̂i,

which captures the difference in the distribution of (Xi,Mi) in the experimental context c and

the target context c∗. Outcome model ĝt(·) use both Xi and Mi to explain outcomes. Note

that estimators for X-validity alone (discussed in Section 5.1) or for C-validity alone are special

cases of this proposed estimator. We provide technical details and proofs in Appendix H.

5.3 T - and Y -validity

Issues of T - and Y -validity are even more difficult in practice, which is naturally reflected in

the strong assumptions discussed in Section 3.2 (Assumptions 2 and 3). This inherent difficulty

is expected because defining a treatment and an outcome are the most fundamental pieces of

any substantive theory; they formally set up potential outcomes, and they are directly defined

based on research questions.

Therefore, we emphasize the importance of designing experiments such that the required

assumptions are plausible by designing treatments and measuring outcomes as similar as possi-

ble to their targets. For example, to improve T -validity, Broockman and Kalla (2016) studied
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door-to-door canvassing conversations that typical LGBT organizations can implement in a

real-world setting. To safely measure outcomes as similar as possible to the actual dissent deci-

sions in autocracy, Young (2019) carefully measured real-world, low-stakes behavioral outcomes

in addition to asking hypothetical survey outcomes. This design-based approach is essential

because, if the required assumptions hold by the design of the experiment, no additional adjust-

ment is required for T - and Y -validity in the analysis stage. If such design-based solutions are

not available, there is no general approach to conduct effect-generalization for T - and Y -validity

without making stringent assumptions.

Importantly, even when effect-generalization is infeasible, researchers can assess external

validity by examining the question of sign-generalization under weaker assumptions, which we

discuss next in Section 6.

6 Sign-Generalization

We now consider the second research goal in external validity analysis; sign-generalization

— evaluating whether the sign of causal effects is generalizable. This goal is most relevant

when researchers are testing theoretical mechanisms, and substantive theories have observable

implications on the direction or the order of treatment effects but not on the effect magnitude.

Sign-generalization is also sometimes a practical compromise when effect-generalization is not

feasible.

The first step of sign-generalization is to include variations in relevant external validity di-

mensions at the design stage of experiments. To address X-, T -, Y -, and C-validity, researchers

can include diverse populations, multiple treatments, outcomes, and contexts into experiments,

respectively. Incorporating such explicit variations has a long history and is already standard

in practice. We formalize this common practice as the design of purposive variations and show

what assumption is necessary for using such purposive variations for sign-generalization (Sec-

tion 6.1). The required overlap assumption (Assumption 5) is much weaker than assumptions

required for effect-generalization.

If researchers can include purposive variations to satisfy the required assumption, the final

step is to conduct a new sign-generalization test, which computes partial conjunction p-values
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Figure 4: Summary of Sign-Generalization.

(Benjamini and Heller, 2008). Using these adjusted p-values, researchers can assess the direction

of the T-PATE while accounting for multiple comparisons correctly. We detail their practical

implementation and describe how to interpret them in Section 6.2. The key advantage is that

the same proposed approach is applicable to all four dimensions. Our proposed approach is

summarized in Figure 4, reserving methodological details for below.

6.1 Design of Purposive Variations

If possible, we woud like to test the sign of the T-PATE directly. However, it is infeasible in many

applications as we often cannot observe target populations, treatments, outcomes, or contexts.

Even in such scenarios, we can indirectly test the sign of the T-PATE by using multiple outcomes

and incorporating diverse units, treatments, and contexts into experiments. The central idea

is that if we consistently find positive (negative) causal effects across variations in all four

dimensions, they together bolster evidence for a positive (negative) T-PATE (Shadish, Cook

and Campbell, 2002). We call this approach the design of purposive variations. Incorporating
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variations has a long history and is already standard in practice. In our review of all the

experiments published in the APSR between 2015 and 2019, we found that at least 80% of

articles included variations on at least one dimension.

A practical question is: how should we incorporate purposive variations into experiments

for testing the sign of the T-PATE? To answer this, we now formally introduce the design of

purposive variations. For the sake of clear presentation, we focus on Y -validity. We discuss

other dimensions in Section 6.3.

While there are many valid ways to choose variations for outcomes, we propose a simple

approach based on a convex combination.

Assumption 5 (Overlap Between Target Outcomes and Purposive Variations)

Choose K outcomes, {Y 1, . . . , Y K}, such that the T-PATE, EP{Y ∗i (T = 1, c)− Y ∗i (T = 0, c)},

is within a convex hull of the K causal effects
{
EP{Y k

i (T = 1, c)− Y k
i (T = 0, c)}

}K
k=1

.

Although this assumption might seem strong at first, its substantive meaning is natural.

Intuitively, we choose the K outcomes such that the T-PATE is within a range of the K causal

effects we estimate in the experiment (see Figure 5). This is akin to the overlap assumption

required in standard observational causal inference. Similarly, in sign-generalization, we require

that the target outcome and the purposive variations overlap. Without this assumption, infer-

ences will heavily depend on extrapolation, which we wish to avoid. In practice, because we

do not know the T-PATE, researchers can make this assumption more plausible by choosing a

range of outcomes on which treatment effects are expected to be smaller and larger than the

T-PATE. For example, Young (2019) writes, “the items were selected to be contextually rele-

vant and to span a range of risk levels” (p. 145). Assumption 5 provides a formal justification

for such a design of purposive variations.

This assumption is violated when the T-PATE is outside a range of causal effects covered by

the K outcomes. For example, in Young (2019), if the target outcome is a real-world high-risk

dissent behavior and the intervention effect on this outcome is much smaller than those studied

in the experiment, the overlap assumption is violated. At the same time, in this scenario,

no external validity analysis is possible without using extrapolation. Our proposed approach
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Figure 5: Overlap Assumption.

guards against such model-dependent extrapolation by clarifying underlying assumptions.

6.2 Sign-Generalization Test

We now propose a new sign-generalization test. The goal here is to use purposive variations to

test whether the sign of causal effects is generalizable.

Without loss of generality, suppose a substantive theory predicts that the T-PATE is posi-

tive. We focus again on Y -validity, and thus, our target null hypothesis can be written as,

H∗0 : EP{Y ∗i (T = 1, c)− Y ∗i (T = 0, c)} ≤ 0. (7)

If we can provide statistical evidence against the null hypothesis H∗0 , we support the substantive

theory predicting a positive effect.

When we cannot measure the target outcome Y ∗ in the experiment to directly evaluate

this target hypothesis, we rely on the K hypotheses, corresponding to the K outcomes in

experiments; for k ∈ {1, . . . , K},

Hk
0 : EP{Y k

i (T = 1, c)− Y k
i (T = 0, c)} ≤ 0. (8)

6.2.1 Connecting Purposive Variations to Sign-Generalization

We first show that when causal effects are positive (negative) for all K outcomes, the causal

effect on the target outcome is also positive (negative) under the overlap assumption (Assump-

tion 5). It implies that testing the union of the K null hypotheses (equation (8)) is a valid test

for the target null hypothesis (equation (7)) under the overlap assumption. In practice, this

means that a common approach of checking whether all K causal estimates are statistically
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significant at a prespecified significance level α (e.g., α = 0.05) is valid as a sign-generalization

test, without additional multiple testing corrections. Details and derivations are presented in

Appendix H.

6.2.2 Partial Conjunction Test

While checking whether all p-values are smaller than α is easy to implement, it can be too

stringent in practice. For example, even if an estimated causal effect on just one out of

many outcomes is not statistically significant, the method above is inconclusive about sign-

generalization. However, intuitively, finding positive effects on most outcomes provides strong

evidence for Y -validity.

To incorporate such flexibility, we build on a formal framework of partial conjunction tests,

which was recently formalized by Benjamini and Heller (2008) and extended to observational

causal inference in Karmakar and Small (2020). We extend the partial conjunction test frame-

work to external validity analysis.

In the partial conjunction test, our goal is to provide evidence that the treatment has a

positive effect on at least r out of K outcomes. Formally, the partial conjunction null hypothesis

is as follows.

H̃r
0 :

K∑
k=1

1{Hk
0 is false} < r (9)

where r ∈ [1, K] is a threshold specified by researchers, and
∑K

k=1 1{Hk
0 is false} counts the

number of true non-nulls. By rejecting this partial conjunction null, researchers can provide

statistical evidence that the treatment has positive causal effects on at least r outcomes. For

example, when r = 0.8K, researchers can assess whether the treatment has positive effects on

at least 80% of outcomes.

How can we obtain a p-value for this partial conjunction test? We only need one-sided

p-values computed separately for each of K outcomes {p1, . . . , pK}. We first sort them such

that p(1) ≤ p(2) ≤ . . . ≤ p(K). Then, we define the partial conjunction p-value as follows.

p̃(1) ≡ Kp(1)

p̃(r) ≡ max{(K − r + 1)p(r), p̃(r−1)} for r ≥ 2. (10)
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Figure 6: Example of Partial Conjunction Test with Three Outcomes. Note: The second step
of “Correction” is based on equation (10).

The p-value for H̃r
0 is p̃(r) (see Figure 6 for an example). This procedure is valid under any

dependence across p-values (see Appendix H.3). In Appendix H.3, we also discuss scenarios in

which p-values are independent across variations.

Finally, it is important to emphasize that researchers do not need to specify the threshold

r. Rather, we recommend reporting partial conjunction p-values p̃(r) for every threshold r (see

equation (10) and examples in Section 7.2). For instance, in Figure 6, we would report all three

partial conjunction p-values {0.03, 0.08, 0.08}, each testing whether 1, 2, or 3 out of our three

outcomes have positive effects. While researchers might be worried about a multiple testing

problem, no further adjustment to p-values is required due to the monotonicity properties of the

partial conjunction p-value (see Appendix H.3 and Benjamini and Heller (2008)). In addition,

using the K partial conjunction p-values, researchers can also directly estimate the number

of outcomes for which the treatment has positive effects by counting the number of outcomes

whose corresponding partial conjunction p-values are less than α. For example, in Figure 6,

the estimated number of outcomes that have positive effects is one because only one out of the

three outcomes is significant at α = 0.05. We provide the details and proofs in Appendix H.3.

6.3 Other Dimensions

While this section focused on Y -validity for clear presentation, researchers can use the same

sign-generalization test for other dimensions as long as purposive variations are included for

each dimension of external validity. For purposive X-variations, researchers can explicitly
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sample distinct subgroups that they expect to have different treatment effects. For instance,

in Broockman and Kalla (2016), researchers could explicitly recruit respondents who have

transgender friends and those who do not. For purposive T -variations, researchers can include

treatment versions that change only one aspect at a time. For example, Young (2019) induced

fear in respondents with two versions of the treatment: “general fear condition” unrelated

to politics and “political fear condition” directly related to politics. Finally, purposive C-

variation is gaining popularity in political science. It has recently become more feasible to run

survey experiments in multiple countries at multiple time points (e.g., Bisgaard, 2019), and

an increasing number of researchers conduct multi-site field experiments (e.g., Dunning et al.,

2019; Blair and McClendon, 2020). It is important to emphasize that researchers can also assess

multiple dimensions together (e.g., Y - and T -validity together) with the same approach. We

provide examples of doing so in Section 7.

7 Empirical Applications

We now report a reanalysis of Broockman and Kalla (2016) as an example of effect-generalization,

and Bisgaard (2019) as an example of sign-generalization. In Appendix C, we provide results

for Young (2019), which focuses on sign-generalization.

7.1 Field Experiment: Reducing Transphobia

Broockman and Kalla (2016) find that a 10-minute perspective-taking conversation can lead

to a durable reduction in transphobic beliefs. Typical of modern field experiments, their ex-

perimental sample was restricted to Miami-Dade registered voters who responded to a baseline

survey, answered a face-to-face canvassing attempt, and responded to the subsequent survey

waves, raising common concerns about X-validity. Unlike many other field experiments, their

experiment provides a rare opportunity to evaluate Y -validity, in particular, whether the in-

tervention has both short- and long-term effects, by measuring outcomes over time (3 days, 3

weeks, 6 weeks, and 3 months after the intervention). For the main outcome variable, the origi-

nal authors computed a single index in each wave based on a set of survey questions on attitudes

toward transgender people. Given the significant policy implication of the effect magnitude,
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we study effect-generalization (Section 5), while addressing concerns of X- and Y -validity to-

gether. Given space constraints, we focus on these two dimensions which are most insightful

for illustrating the proposed approach, and we discuss T - and C-validity in Appendix C.1.

While there are many potentially important target populations, we specify our target pop-

ulation to be all adults in Florida, defined using the common content data from the 2016

Cooperative Congressional Election Study (CCES).

To estimate the T-PATE, we adjust for age, sex, race/ethnicity, ideology, religiosity, and

partisan identification, which include all variables measured in both the experiment and the

CCES. While these variables are similar to what applied researchers usually adjust for, we

have to carefully assess the necessary identification assumption (Assumption 1). If unobserved

variables, such as political interest, affect both sampling and effect heterogeneity, the assump-

tion is untenable. Researchers can make this required assumption more plausible by measuring

variables affecting both sampling and treatment effect heterogeneity.

7.1.1 Effect-Generalization

We estimate the T-PATE using the three classes of estimators discussed in Section 5.1. Weighting-

based estimators include IPW and weighted OLS that adjusts for control variables pre-specified

in the original authors’ pre-analysis plan. Sampling weights are estimated via calibration (Hart-

man et al., 2015). For the outcome-based estimators, we use OLS and a more flexible model,

BART. Finally, we implement two doubly robust estimators; the AIPW with OLS and the

AIPW with BART. We use block bootstrap to compute standard errors clustered at the house-

hold level as in the original study. All estimators are implemented by our companion R package

evalid.

Figure 7 presents point estimates and their 95% confidence intervals using different esti-

mators. Broockman and Kalla (2016) create an outcome index such that the value of one

represents one standard deviation of the index outcome in the control group. Therefore, esti-

mated effects should be interpreted relative to outcomes in the control group. The first column

shows estimates of the SATE for four time periods, and the subsequent three columns present

estimates of the T-PATE using the three classes of estimators from above.
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Figure 7: Estimates of the T-PATE for Broockman and Kalla (2016). Note: The first column
shows estimates of the SATE, and the subsequent three columns present estimates of the T-
PATE for three classes of estimators. Rows represent different post-treatment survey waves.

Several points are worth noting. First, the T-PATE estimates are similar to the SATE

estimate, and this pattern is stable across all time periods. By accounting for X- and Y -

validity, this analysis suggests that Broockman and Kalla (2016)’s intervention has similar

effects in the target population across all time periods. We emphasize that, while the SATE

estimate and the T-PATE estimates are similar in this application, bias in the SATE estimates

can be large in many applications (see Appendix J for illustrations). Thus, we recommend

estimating the T-PATE formally and comparing it against the SATE estimate.

Second, in general, estimates of the T-PATE have larger standard errors compared to that

of the SATE. This is natural and necessary because the estimation of the T-PATE must also ac-

count for differences between the experimental sample and the target population. Importantly,
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both the point estimate and the standard error of the T-PATE affect cost-benefit analysis.

Thus, even though point estimates are similar, cost-benefit analysis for the target population

has more uncertainty due to the larger standard error of the T-PATE.

Finally, we can compare the three classes of estimators. We generally recommend doubly

robust estimators because the sampling and outcome models are often unknown in practice.

However, in this example, the weighted least squares estimator (wLS in Figure 7) also has

a desirable feature; it is the most efficient estimator because it can incorporate many pre-

treatment covariates measured only in the experiment, while other estimators cannot. Note

that this estimator assumes the correct specification of sampling weights. Outcome-based

estimators are also effective here because there is limited treatment effect heterogeneity as

found in the original article. Indeed, all estimators provide relatively stable T-PATE estimates,

which are close to the SATE in this example. By following similar reasoning, researchers can

determine an appropriate estimator in each application (see also Section 5.1.4).

7.2 Survey Experiment: Partisan-Motivated Reasoning

Bisgaard (2019) finds that, even when partisans agree on the facts, partisan-motivated reasoning

influences how they internalize those facts and attribute credit (or blame) to incumbents. In

terms of external validity analysis, Bisgaard (2019) provides several great opportunities to

evaluate sign-generalization in terms of C- and Y -validity. We discuss X- and T -validity in

Appendix C.2.

For C-validity, the study incorporates purposive variations by running a total of four survey

experiments across two countries, the United States and Denmark (Study 1 in the U.S., and

Studies 2–4 in Denmark. See Table 1 of the original study for more details). They differ both

in terms of political and economic settings; the incumbent party’s political responsibility for

the economy is less clear, and the level of polarization among citizens is lower in Denmark than

in the United States.

While generalization to a new target context was not a clear goal of the original paper,

there are potentially many relevant target contexts. For example, Germany shares political

and geographic features with Denmark and its global economic power with the United States.
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Variations for C-Validity Variations for Y -Validity

Study 1 United States Close-ended (1), Open-ended (1), Argument Rating (6)

Study 2 Denmark Close-ended (1), Open-ended (1)

Study 3 Denmark Close-ended (1)

Study 4 Denmark Open-ended (1)

Table 2: Design of Purposive Variations for Bisgaard (2019). Note: The number of the purpo-
sive outcome variations is in parentheses.

Thus, if researchers are interested in generalizing results to Germany, it may be reasonable to

assume that the purposive contextual variations in Bisgaard (2019) satisfy the required overlap

assumption (Assumption 5).

In terms of Y -validity, to measure how citizens attribute responsibilities to incumbents,

the original author uses three different sets of outcomes; closed-ended survey responses, open-

ended-survey responses, and argument rating tasks. The target outcome is citizens’ attribution

of responsibility to incumbents when they read economic news in everyday life. The three

sets of outcomes provide reasonable variations to capture this target outcome by balancing

specificity and reality. We assume that the three sets of outcomes jointly satisfy the required

overlap assumption, and we use all the outcomes for the sign-generalization test.

7.2.1 Sign-Generalization Test

The theory of Bisgaard (2019) can be summarized into two hypotheses, one for supporters of

the incumbent party and the other for those of the opposition party. In the face of positive

economic facts: (H1) Supporters of the incumbent party will be more likely, and (H2) supporters

of the opposition party will be less likely, to believe the incumbent party is responsible for the

economy. We estimate the treatment effect of showing positive economic news on the attribution

of responsibility, relative to showing negative economic news. Thus, for supporters of the

incumbent party, the first hypothesis (H1) predicts that the treatment effects are positive, and

for supporters of the opposition party, the second hypothesis (H2) predicts that the treatment

effects are negative.
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Figure 8: Sign-Generalization Test for Bisgaard (2019). Note: We combine causal estimates
on multiple outcomes across four survey experiments in two countries. Following Section 6, we
report partial conjunction p-values for all thresholds.

For our external validity analysis, we test each hypothesis by considering C- and Y -validity

together using the sign-generalization test. The combination of multiple outcomes across four

survey experiments in two countries yields twelve causal estimates corresponding to each hy-

pothesis (see Table 2). We then assess the proportion of positive causal effects for the first

hypothesis and that of negative causal effects for the second hypothesis using the proposed

partial conjunction test.

For each hypothesis, Figure 8 presents results from the partial conjunction test for all

thresholds. Each p-value is colored by context, with Denmark in red and the United States in

blue. Variations in outcome are represented by symbols. For incumbent supporters, we find

eight out of twelve outcomes (66%) have partial conjunction p-values less than the conventional

significance level 0.05. It is notable that most of the estimates that do not support the theory

are from Denmark, which we might expect since partisan-motivated reasoning would be weaker

in Denmark. In contrast, for opposition supporters, the results show eleven out of twelve

outcomes (92%) have partial conjunction p-values less than 0.05, and there is stronger evidence

across outcomes and contexts.

Therefore, even though there exists some support for both hypotheses, Bisgaard (2019)’s

theory is more robust for explaining opposition supporters; opposition supporters engage more
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in partisan-motivated reasoning than incumbent supporters.

8 Discussion

8.1 Addressing Multiple Dimensions Together

As illustrated by our empirical applications in Section 7, we often have to consider multi-

ple dimensions of external validity together in practice. In general, we recommend thinking

about each dimension separately and sequentially because each dimension requires different

types of assumptions as discussed in Section 3.2. Importantly, the proposed methodologies for

each dimension can be combined naturally by applying them sequentially. To conduct effect-

generalization, it is often easier to address X- and C-validity first before thinking about T - and

Y -validity. In Section 7.1, we addressed X-validity using three classes of the T-PATE estima-

tor and then evaluated Y -validity by checking whether estimates are stable across outcomes

measured at different points in time.

For sign-generalization, researchers can address multiple dimensions simultaneously as long

as they include purposive variations for relevant dimensions. This is one of the key advantages

of sign-generalization. In Section 7.2, we examined C- and Y -validity together via the partial

conjunction test (see Figure 8). See another example based on Young (2019) in Appendix C.

Finally, we emphasize that it is not always possible to empirically address all relevant

dimensions of external validity because the required identification assumptions can be untenable

or because required data are not available. In such cases, it is important to clarify which

dimension of external validity researchers cannot address empirically and why.

8.2 Relationship to Replication and Meta-Analysis

Meta-analysis is a method for summarizing statistical findings from multiple papers or research

literature. While still rare, political scientists have begun using it to aggregate results from

randomized experiments (e.g., Dunning et al., 2019; Paluck, Green and Green, 2019). Meta-

analysis can be based on the most common, “uncoordinated scientific replication experiments”

(different researchers conduct similar experiments over time without explicit coordination across
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researchers), or increasingly relevant, “coordinated scientific replication experiments” (e.g., the

EGAP Metaketa studies) (Blair and McClendon, 2020).3 Even though we have so far focused

on how to improve external validity of individual experiments, the proposed approach can also

be useful for conducting meta-analysis.

First, meta-analysts must also consider the same four dimensions of external validity. Scien-

tific replication of experiments is a powerful tool because researchers can incorporate purposive

variations across experiments and design later experiments to overcome external validity con-

cerns of earlier experiments. But, to maximize the utility of scientific replication, researchers

have to examine the same four dimensions of external validity and associated assumptions

to design experiments that can credibly address external validity concerns. For example, the

Metaketa initiative can select sites by explicitly diversifying context-moderators such that the

overlap assumption is more plausible.

Second, both effect- and sign-generalization are important for meta-analysis. Some studies,

such as Dunning et al. (2019), clearly aim to provide policy recommendations and evaluate the

cost-effectiveness of particular interventions. Estimators for the T-PATE (Section 5) are essen-

tial when meta-analysts want to predict causal effects in new target sites. Sign-generalization

(Section 6) is useful when meta-analysis focuses on synthesizing scientific knowledge (e.g.,

Paluck, Green and Green (2019) examine whether intergroup contact typically reduces preju-

dice).

To illustrate how our proposed approach can also be useful for meta-analysis, we consider

the Metaketa I (Dunning et al., 2019) as an application. Building on the original analysis,

we discuss how researchers might conduct effect-generalization to a new context and how to

conduct sign-generalization for coordinated experiments. We report all details in Appendix D.

3Replication experiments are still sometimes too costly. For example, researchers might not

be able to run multiple studies due to limited resources or because an experiment needs to be

done in a rare context. Our proposed approach can be applied to one experiment and does not

assume multiple experiments.
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8.3 External Validity of Observational Studies

For observational studies, researchers can decompose total bias into internal validity bias and

external validity bias (Westreich et al., 2019). Thus, the same four dimensions of external

validity are also relevant in observational studies. For example, widely-used causal inference

techniques, such as instrumental variables and regression discontinuity, make identification

strategies more credible by focusing on a subset of units, which often decreases X-validity.

While effect-generalization requires even stronger assumptions in observational studies, sign-

generalization is possible in many applications as far as purposive variations exist in observa-

tional data.

As a concrete example, we examine two large scale observational studies based on a natural

experiment (Dehejia, Pop-Eleches and Samii, 2021) and instrumental variables (Bisbee et al.,

2017). Using these two studies, we discuss in Appendix E how to use the proposed sign-

generalization test to combine estimates across contexts and evaluate sign-generalization in

observational studies. An effect-generalization type analysis is reported in the original studies

mentioned above.

9 Concluding Remarks

External validity has been a focus of long-standing debates in the social sciences. However,

in contrast to extensive discussions at the conceptual level, there have been few empirical

applications where researchers explicitly incorporate design or analysis for external validity.

In this article, we aim to improve empirical approaches for external validity by proposing

a framework and developing tailored methods for effect- and sign-generalization. We clarify

underlying assumptions required to account for concerns about X-, T -, Y -, and C-validity. We

then describe three classes of estimators for effect-generalization and propose a new test for

sign-generalization.

Addressing external validity is inherently difficult because it aims to infer whether causal

findings are generalizable to other populations, treatments, outcomes, and contexts that we

do not observe in our data. In this paper, we formally clarify conditions under which this
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challenging yet essential inference is possible, and we propose new methods to improve external

validity.
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A Effect-Generalization

We examine identification and estimation of the T-PATE when dealing with X- and C-validity

together. The well-researched problem of X-validity is a special case of this setting.

A.1 Identification of the T-PATE

Assumption A1 (Identification Assumptions for X- and C-validity)

• Contextual Exclusion Restriction: For all t ∈ T , m ∈M, and all units,

Yi(T = 1,M = m, c)− Yi(T = 0,M = m, c)

= Yi(T = 1,M = m, c∗)− Yi(T = 0,M = m, c∗), (1)

where M are context-moderators as defined in Section 3.2.4. T is the support of the

treatment variable T and M is the support of the context moderators M.

• Ignorability of Sampling and Treatment Effect Heterogeneity: For all x ∈ X , m ∈M,

Yi(T = 1,M = m)− Yi(T = 0,M = m) ⊥⊥ Si | Xi = x,Mi = m, Ci = c (2)

Yi(T = 1,M = m)− Yi(T = 0,M = m) ⊥⊥ Ci | Xi = x,Mi = m, (3)

where X is the support of the pre-treatment covariates X.

• Positivity: For all x ∈ X , m ∈M,

0 < Pr(Si = 1 | Xi = x,Mi = m, Ci = c) < 1 (4)

0 < Pr(Ci = c | Xi = x,Mi = m) < 1 (5)

0 < Pr(Ci = c∗ | Xi = x,Mi = m) < 1 (6)

• Consistency: For all units,

Yi = Yi(T = Ti,M = Mi) (7)

Theorem A1 (Identification of the T-PATE under X- and C-validity)

Under Assumption A1 and the randomization of treatment assignment in experiments, the

T-PATE is identified as follows.

EP∗ [Yi(T = 1, c∗)− Yi(T = 0, c∗)]

=
∑

m∈M

∑
x∈X
{E(Yi | Ti = 1, Si = 1, Ci = c,Mi = m,Xi = x)

−E(Yi | Ti = 0, Si = 1, Ci = c,Mi = m,Xi = x)}Pr(Mi = m,Xi = x | Ci = c∗),

where the sum may be interpreted as integral when appropriate.

1



Proof. In this proof, for notational simplicity, we use Yi(1,m) and Yi(0,m) instead of Yi(T =

1,M = m) and Yi(T = 0,M = m).

EP∗ [Yi(T = 1, c∗)− Yi(T = 0, c∗)]

=
∑

m∈M

∑
x∈X

E{Yi(T = 1, c∗)− Yi(T = 0, c∗) |Mi = m,Xi = x, Ci = c∗}Pr(Mi = m,Xi = x | Ci = c∗)

=
∑

m∈M

∑
x∈X

E{Yi(1,m)− Yi(0,m) |Mi = m,Xi = x, Ci = c∗}Pr(Mi = m,Xi = x | Ci = c∗)

=
∑

m∈M

∑
x∈X

E{Yi(1,m)− Yi(0,m) | Ci = c,Mi = m,Xi = x}Pr(Mi = m,Xi = x | Ci = c∗)

=
∑

m∈M

∑
x∈X

E{Yi(1,m)− Yi(0,m) | Si = 1, Ci = c,Mi = m,Xi = x}Pr(Mi = m,Xi = x | Ci = c∗)

=
∑

m∈M

∑
x∈X

[
E{Yi(1,m) | Ti = 1, Si = 1, Ci = c,Mi = m,Xi = x}

−E{Yi(0,m) | Ti = 0, Si = 1, Ci = c,Mi = m,Xi = x}
]

Pr(Mi = m,Xi = x | Ci = c∗),

=
∑

m∈M

∑
x∈X
{E(Yi | Ti = 1, Si = 1, Ci = c,Mi = m,Xi = x)

−E(Yi | Ti = 0, Si = 1, Ci = c,Mi = m,Xi = x)}Pr(Mi = m,Xi = x | Ci = c∗),

where the first equality follows from the definition of the T-PATE and the rules of conditional

probability, the second from the contextual exclusion restriction (equation (1) in Assump-

tion A1), the third from the conditional ignorability of the selection into contexts (equation (3)

in Assumption A1), and the fourth from the conditional ignorability of the selection into exper-

iments (equation (2) in Assumption A1). The fifth inequality follows from the randomization

of treatment assignment within the experiment, which implies

{Yi(1,m), Yi(0,m)} ⊥⊥ Ti | Si = 1, Ci = c,Mi = m,Xi = x, (8)

for all x ∈ X , m ∈ M. Note that, as we emphasize in Section 3.2.4, it is critical that both

context-moderators Mi and covariates used for the X-validity Xi are pre-treatment, that is,

not affected the treatment variable (Rosenbaum, 1984). The final sixth equality follows from

the consistency of the potential outcomes (equation (7) in Assumption A1). This completes

the proof. 2

A.2 Three Classes of Estimators

Here we provide the formal expressions of the three classes of the T-PATE estimators. We

prove their statistical properties in Appendix H in the Online Supplementary Appendix II. π̂i

and θ̂i are defined in Section 5.2.

A.2.1 Weighting-based Estimator

Inverse Probability Weighted (IPW) estimator:

τ̂IPW ≡
∑R

i=1 θ̂iπ̂iδi1{Ci = c}SiTiYi∑R
i=1 θ̂iπ̂iδi1{Ci = c}SiTi

−
∑R

i=1 θ̂iπ̂i(1− δi)1{Ci = c}Si(1− Ti)Yi∑R
i=1 θ̂iπ̂i(1− δi)1{Ci = c}Si(1− Ti)

, (9)
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where δi ≡ Pr(Ti = 1 | Si = 1, Ci = c,Mi,Xi) is the treatment assignment probability known

from the experimental design. We use R to denote the sum of the sample size in the experiment

(n) and in the target population data (N).

Weighted Least Squares:

(α̂, τ̂wLS, γ̂) = argmin
α,τ,γ

1

n

n∑
i=1

wi(Yi − α− τTi − Z>i γ)2 (10)

where wi = θ̂iπ̂i{δiTi + (1− δi)(1− Ti)}, and Zi are pre-treatment covariates measured within

the experiment.

A.2.2 Outcome-based Estimator

τ̂out =
1

N

∑
j∈P∗

{ĝ1(Xj ,Mj)− ĝ1(Xj ,Mj)}

where

ĝt(Xj ,Mj) ≡ Ê(Yi | Ti = t,Mj ,Xj , Si = 1, Ci = c).

A.2.3 Doubly Robust Estimator

Augmented Inverse Probability Weighted (AIPW) estimator:

τ̂AIPW ≡
∑R

i=1 θ̂iπ̂iδi1{Ci = c}SiTi{Yi − ĝ1(Mi,Xi)}∑R
i=1 θ̂iπ̂iδi1{Ci = c}SiTi

−
∑R

i=1 θ̂iπ̂i(1− δi)1{Ci = c}Si(1− Ti){Yi − ĝ0(Mi,Xi)}∑R
i=1 θ̂iπ̂i(1− δi)1{Ci = c}Si(1− Ti)

+

∑R
i=1 1{Ci = c∗}{ĝ1(Mi,Xi)− ĝ0(Mi,Xi)}∑R

i=1 1{Ci = c∗}
,

where we use R to denote the sum of the sample size in the experiment (n) and in the target

population data (N).

A.3 Inference with Bootstrap

To compute standard errors, we rely on the nonparametric bootstrap (Efron and Tibshirani,

1994). In particular, we consider the bootstrap over experimental samples. If randomization

is done with block or cluster randomization, we also incorporate such treatment assignment

mechanisms. While the target population data is often considered fixed, it is also possible to

bootstrap over the target population data to account for population sampling uncertainty.

B Sign-Generalization

B.1 Fisher’s Combined p-value

In some applications, researchers can obtain p-values that are independent across variations.

For example, when researchers run experiments across multiple contexts, experimental data
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across context are independent and thus, p-values are independent. In such cases, researchers

can use the Fisher’s method to combine p-values and compute the partial conjunction p-value

(Benjamini and Heller, 2008). For the partial conjunction null hypothesis H̃r
0 , the partial-

conjunction p-value is

p̃(r) = Pr

(
χ2
2(K−r+1) ≥ −2

K∑
i=r

log p(i)

)
.

B.2 Statistical Power and Purposive Variations

One key consideration is the number of purposive variations to include. On the one hand, the

larger number of purposive variations increases the credibility of sign-generalization because

the required overlap assumption is more tenable. On the other hand, a larger number of

purposive variations usually leads to smaller effective sample sizes and larger standard errors.

In particular, for T - and C-validity, introducing more variations means smaller sample size for

each treatment level and each context.

In general, researchers should prioritize the credibility of sign-generalization and incor-

porate enough purposive variations to satisfy the overlap assumption. This is because sign-

generalization becomes impossible without sufficient purposive variations, whereas there are

several ways to mitigate concerns about standard errors. In particular, researchers can supple-

ment the design of purposive variations with methods that improve statistical efficiency, such

as blocking and the design-based method of using pre-treatment variables (see e.g., Gerber

and Green, 2012), as usually recommended in any experimental analyses.

C Empirical Applications: Full Analysis

We apply the proposed methodologies to the three empirical applications described in Section

2. In this section of the supplementary material, we provide additional discussion and analyses

for the three studies.

C.1 Field Experiment: Reducing Transphobia

In Section 7.1, we discussed effect-generalization for Broockman and Kalla (2016). In this

section, we provide additional implementation details for the described estimators. We also

discuss T - and C-validity within the context of this experiment.

C.1.1 Effect-Generalization: Estimation Details

To estimate the T-PATE, we adjust for age, sex, race/ethnicity, ideology, religiosity, and parti-

san identification, which include all variables measured in both the experiment and the CCES.1

1In the experiment, the authors used age, sex, and race/ethnicity as reported on the voter file. There may be

some measurement differences compared to the self-reported measures used in the CCES. The remainder of the

variables used the same question, although we collapsed responses to common values across the two datasets.

Age is measured using a five-category age bucket for weighting, and age in years for BART. Race/ethnicity is

coded as a three-level category for “Black,” “Hispanic,” and “White/Other.” Ideology and partisanship are

coded as seven-point scales, and religiosity is a five-level factor. Indicators are created for factors in regression
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We focus on the estimation of the intent-to-treat effect in the target population, defined using

the CCES data of respondents from Florida (Ansolabehere and Schaffner, 2017). We estimate

the T-PATE using three classes of estimators we discussed in Section 5.1. Weighting-based

estimators include IPW and weighted least squares with the control variables pre-specified in

the original authors’ pre-analysis plan. Sampling weights are estimated via calibration (Deville

and Särndal, 1992; Hartman et al., 2015), which matches weighted marginals of the experi-

mental sample to the target population marginals. For the outcome-based estimators, we use

OLS and a more flexible model, BART (Hill, 2011). Finally, we implement two doubly robust

estimators; the AIPW with OLS and the AIPW with BART, as described in Section 5.1,

where the weights are estimated using calibration. We use function tpate in our forthcoming

R package evalid to implement all estimators.

C.1.2 Y -validity

In addition to the measurement of outcomes over time, Broockman and Kalla (2016)’s study

improves Y -validity in a number of ways. First, they measure outcomes in surveys ostensibly

unrelated to the intervention. While not easily quantifiable, this helps increase external validity

of the measure by avoiding survey satisficing among respondents aware of the intervention.

Second, typical of modern field experiments, Broockman and Kalla (2016) measure a variety of

survey questions on attitudes toward transgender people, which jointly approximate real-world

attitudes. We follow the original analysis that combines multiple outcomes into a single index.

In particular, we estimate the impact on this index 3 days, 3 weeks, 6 weeks, and 3 months

after the intervention. These multiple outcome variations can also be used to conduct the

sign-generalization test described in Section 6 under much weaker assumptions. An example

of this approach is discussed in our reanalysis of Bisgaard (2019) and Young (2019).

C.1.3 T -validity

The intervention used in Broockman and Kalla (2016) is a complex, compound treatment.

The authors note “we cannot be certain that perspective-taking is responsible for any effects

or that active processing is responsible for their duration; being primarily concerned with

external validity and seeking to limit suspicion, we did not probe intervening processes or

restrict the scope of the conversations as a laboratory study would” (p. 222). This implies the

target treatment is the whole canvassing interaction, not merely the perspective-taking aspect.

Individuals were randomly assigned to receive a door-to-door canvassing intervention from

either a self-identified transgender or non-transgender individual, who revealed their identity

during the intervention. This provides an opportunity to evaluate one aspect of T -validity.

Having a conversation with a self-identified transgender individual may have a different effect

than a conversation with a non-transgender individual. The authors partnered with an LGBT

and weighting methods, and are entered as ordered categories for the causal BART. In the supplementary

material of Broockman and Kalla (2016), the original authors compared a subset of the above six variables,

{age, sex, and race/ethnicity}, of the experimental sample with those of all voters in Miami-Dade county using

the voter file.
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Figure A1: T-PATE Estimates for Broockman and Kalla (2016) By Canvasser Identity Note:
The x-axis within panels represents survey waves (3 days, 3 weeks, 6 weeks, 3 months). Panels
present canvasser identity. Estimates are for the SATE, with pre-specified controls (pink) and
the T-PATE with weighted least squares (blue).

organization, where about a quarter of the canvassers self-identified as transgender, a much

larger proportion than the general population, and one that may be infeasible in a larger-scale

intervention. Therefore, researchers may be interested in whether the treatment is robust to

partnerships with organizations with a different distribution of canvasser identity in which

fewer individuals identify themselves as transgender.

Figure A1 presents the T-PATE estimates by canvasser identity and time-period. The

SATE estimate (pink) and the T-PATE estimate based on the weighted least squares es-

timator (blue), both with pre-specified controls, are positive across canvasser identity and

time-period, and the T-PATE estimates are similar to the SATE estimates. This suggests that

the intervention can have similar effects even after considering three dimensions together, i.e.,

X-, Y -, and T -validity. It is important to re-emphasize that no formal analysis can guarantee

“full” external validity, and we should be clear about the targets of external validity. This

analysis provides evidence for (1) X-validity with all adults in Florida under Assumption 1,

(2) Y -validity over three months, and (3) T -validity with respect to the identity of canvassers.

C.1.4 C-validity

As is common in field experiments, the authors conducted their analysis in one geography,

Miami. Therefore, it is difficult to evaluate C-validity in terms of geography. However, the

authors discuss one important aspect of context that could impact the effectiveness of the inter-

vention, noting that “[a]ttack ads featuring antitransgender stereotypes are another common

feature of political campaigns waged in advance of public votes on nondiscrimination laws”
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(p. 223). This contextual variable, the ad environment, might change how the treatment affects

outcomes, which is the C-validity question. To address this concern, they evaluate support

for the Miami-Dade anti-discrimination law during each post-treatment survey wave. During

wave three, to “examine whether support for the law would withstand such [negative attack

ads], we showed subjects one of three such ads from recent political campaigns elsewhere, then

immediately asked about the law again” (p. 223). They note that, while support for the law

decreases in response to the attack ad, individuals subjected to the perspective-taking inter-

vention were still more positive towards the law than those in the control group. The negative

impact of the ad on support for the law diminished by wave 4.

We use a sign-generalization test to evaluate C-validity of the results across the pre- and

post-attack ad measurement in wave 3, as well as the measurement in wave 4.2 The target

context here is one in which negative attack ads are present during the canvassing period.

The pre-ad measurement likely has a larger effect than might be present in a context with a

large negative ad campaign, whereas the post-ad measurement, taken directly after viewing

an attack ad, likely represents a stronger impact of a negative ad campaign, giving credence to

the overlap assumption. The measurement in wave 4 is likely somewhere in the middle, given

the time since the individual viewed the attack ad.

We first focus on C-validity together with Y -validity. To do so, we consider an OLS

estimator with pre-specified controls without sampling weights (i.e., we are not considering X-

validity for now). We find that the point estimates of the intervention effect are all positive,

and using the partial conjunction test, we find that all outcomes across three-time periods

have a p-value that is significant at the α = 0.05 level.

We then evaluate three dimensions together, C-, Y -, and X-validity. In this analysis, since

the focus is on a law in Miami-Dade county, we address X-validity by weighting to a target

population defined by the full list of registered voters from which the experimental sample was

drawn.3 We incorporated estimated sampling weights to a weighted least squares estimator

we described in Section 5. Using the partial conjunction test, while the point estimates are

all positive and consistent with the theory, no estimate rejects the conventional significance

level at any threshold. Therefore, there is limited evidence that the intervention has the same

positive effects across different ad environments among all Miami-Dade voters.4

2The authors note in their original analysis that the term “transgender” had not been defined for the control

group in the first and second waves, mitigating the effect of the intervention. Therefore, we focus on the later

waves where “transgender” is defined for all subjects.

3Weighting is done using all available voter file characteristics, including sex, race/ethnicity, age, turnout in

2010, 2012, and 2014, and party registration.

4We note that, in the original manuscript, the authors focus on the complier average causal effect, which

was statistically significant at the α = 0.05 level in a one-tailed test for each of the measurements described.
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C.1.5 Cost-Benefit Analysis

Effect-generalization is most useful for randomized experiments that have policy implications

because cost-benefit considerations will be affected by the actual effect size. While a formal

cost-benefit analysis is beyond the scope of this paper, we discuss a simple approach to cost-

benefit analysis and clarify how the T-PATE estimate will affect such analyses.5

We use bi to represent unit i’s benefit corresponding to a one unit change in the outcome

of interest, and use ci to represent the cost of the treatment for unit i. These parameters bi

and ci depend on the application, and thus, we keep them general here. This generality is

important because different organizations will have different costs and gain different benefits

from the same intervention. The average utility of the intervention to the target population

can be written as 1
N

∑N
i=1(τibi − ci) where τi is the treatment effect for unit i. When the

average utility is positive, researchers may argue that the intervention is cost-effective.

Suppose the benefit parameter bi is constant across units, denoted by b. Then, the average

utility can be simplified to be b × T-PATE − 1
N

∑N
i=1 ci. Therefore, the T-PATE estimate is

directly useful for the cost-benefit analysis. In particular, we can estimate the average utility

by b×T̂-PATE− 1
N

∑N
i=1 ci where T̂-PATE is estimated by one of the three classes of estimators

discussed in Section 5. The standard error is b× ŝe(T̂-PATE) where ŝe(T̂-PATE) is the standard

error of the T-PATE estimator estimated using the bootstrap. Therefore, researchers can test

whether the average utility is statistically significantly different from zero.

Therefore, even though our analysis of the T-PATE showed point estimates similar to the

SATE, our analysis revealed that standard errors of the T-PATE estimate are larger than those

of the SATE estimate. This suggests that statistical uncertainty for the average utility of the

treatment are often larger when researchers appropriately take into account external validity

concerns and conduct effect-generalization.

Finally, when benefit parameter bi differs across subgroups, researchers can estimate the

T-PATE separately for subgroups and apply the same logic. While formal cost benefit analysis

has been rare in political science, future work can incorporate it into the potential outcomes

framework and connect it more thoroughly to the question of external validity.

C.2 Survey Experiment: Partisan-Motivated Reasoning

In Section 7.2, we discussed a sign-generalization test for Bisgaard (2019) focusing on Y - and

C-validity. We discuss X- and T -validity in this section.

C.2.1 X-validity

The studies, conducted by YouGov, are population-based surveys of the voting-age popula-

tion. Population-based survey experiments are intended to be representative of the target

population, increasing the likelihood of X-validity. The analyses in the original manuscript do

not incorporate survey weights6; however, as noted in footnote 1 of the original manuscript,

5We thank an anonymous reviewer for encouraging us to examine the cost benefit analysis more.

6Weights are not available in the replication file.
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YouGov used an “Active Sampling” technique for Studies 1-3, in which respondents are invited

continuously to match “key characteristics of the target population” (p. 828). We conduct un-

weighted analyses here, and our target population is the same as the sample Bisgaard (2019)

focused on.

C.2.2 T -validity

In each study, individuals are randomly assigned to read about a positive or negative change

in GDP, or assigned to a control group in studies 1 and 2. To the degree possible, the only

difference in the prompts is whether the change in GDP is cast in a positive or negative

light. The target treatment is the provision of positive or negative economic information in

everyday life, such as when reading news articles. The treatment is designed to “[keep] in

touch with reality” while also “relatively strong and unambiguous to create a situation in

which both stripes of partisans would acknowledge the facts at hand” (p. 828), indicating

that the treatment effect considered within this experiment might be stronger than what we

would observe in the real world. In this experiment, unfortunately, there is only one treatment

implemented, and therefore, there is no purposive variation we can use for sign-generalization.

If we can incorporate several treatments with varying degrees of reality, we can use the proposed

sign-generalization test to evaluate this aspect of the T -validity.

C.2.3 C-validity

We considered the main contextual variations across the United States and Denmark in Sec-

tion 7.2. Here, we consider an additional contextual variation available in the study. Another

source of contextual variation occurs within Denmark, where the ruling party changes from a

center-left to a center-right coalition between Studies 2 and 3. Therefore, if Bisgaard (2019)’s

theory holds, those who support a center-left coalition would attribute responsibility to the

government in the face of positive economic information in Study 2 (as supporters of the in-

cumbent party), but the same people would attribute little responsibility to the government

in the face of positive economic information in Study 3 (now as supporters of the opposition

party).

Figure A2 presents the analysis from Section 7.2 of the main text, including the additional

contextual variation of the Denmark ruling coalition. As can be seen, results for opposition

supporters are strongest, including across the coalition variation in Denmark. However, the

results from the Denmark center-right coalition do not support the hypothesis for incumbent

supporters.

C.2.4 Discussion

The results in Section 7.2 suggest several important policy implications. First, as suggested in

the original study, political campaigns emphasizing news about changes in GDP will likely have

larger and more stable effects in the United States than in Denmark because the incumbent

party’s political responsibility for the economy is less clear, and the level of polarization among

citizens is lower in Denmark than in the United States. Second, our new result based on
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Figure A2: Sign-Generalization Test for Bisgaard (2019). Note: We combine causal estimates
on multiple outcomes across four survey experiments in three contexts. Following Section 6,
we report partial conjunction p-values for all thresholds.

the sign-generalization test suggests that such political campaigns work more effectively for

opposition supporters, i.e., negative campaigns about the incumbent work better than positive

campaigns.

C.3 Lab Experiment: The Effect of Emotions on Dissent in Autocracy

Young (2019) finds that fear plays a key role in shaping individuals’ risk assessment of repres-

sion in an autocracy, which in turn affects the likelihood of dissent. We now consider how

to conduct a formal external validity analysis of this theory. Like Bisgaard (2019), Young

(2019)’s research question and hypotheses, which focus primarily on the direction of causal

effects, fit well with sign-generalization. In particular, she formulates her main hypotheses as

follows. Individuals in a state of fear will: (H1) express less dissent, (H2) be more pessimistic

about the risk of repression, and (H3) be more pessimistic in their expectations of whether

others will also dissent.7

We use the sign-generalization test to take into account T - and Y -validity together. We

show how to conduct the sign-generalization test by combining variations in treatments and

outcomes. We also discuss X- and C-validity.

C.3.1 T -validity

Young (2019) implemented two versions of the treatment in which participants were either

directed to describe general fears, and directed away from experiences related to politics and

elections (general fear condition), or they were directed to describe fears related to politics and

elections (political fear condition). These two conditions are designed based on considerations

of both preciseness and realism of treatments (see also Section 3.2.2). The general fear condi-

7Note that we focus our external validity analysis on the three main hypotheses listed above because no

explicit purposive variation is available for the final fourth hypothesis (see p.142 of the original article).
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tion is designed to be a “cleaner test of the effect of fear because in this condition participants

are not even reflecting on information about repression that they already have,” and the po-

litical fear condition “more closely approximates the way that fear may be induced in practice

in repressive environments, through memories or stories of brutal violence” (p. 144). These

two treatment conditions are compared against a control condition, in which participants were

asked to describe activities that make them feel relaxed.

Because the two treatments address both preciseness and realism, many interesting target

treatments will satisfy the required overlap assumption (Assumption 5) under the purposive

variations in Young (2019). We formally test whether causal estimates are consistently negative

across variations in these treatment conditions. If we find the sign of causal estimates is stable,

we can expect that a broad range of treatments inducing fear will also negatively affect the

expressions of dissent.

C.3.2 Y -validity

For each of the hypotheses, Young (2019) measures a host of outcomes that are contextually

relevant and span a range of risk levels. For the first hypothesis (H1), she measures six hypo-

thetical acts (wearing an opposition party t-shirt, sharing a funny joke about the president,

going to an opposition rally, refusing to go to a rally for the ruling party, telling a state security

agent that she supports the opposition, and testifying in court against a perpetrator of vio-

lence) as well as one behavioral outcome (selecting a plastic wristband with a pro-democracy

slogan vs. a non-political message). Similarly, for the second hypothesis (H2), measurements

are taken to assess the likelihood individuals would experience six types of repression (threats,

assault, destruction of property, sexual abuse, abduction, and murder) if they attended an op-

position rally or meeting. Finally, for the third hypothesis (H3), she asks about the proportion

of other opposition supporters that would engage in the six hypothetical acts of dissent from

the first hypothesis. For each hypothetical attitude question, the respondents were also asked

to evaluate the item for both the current period, when risks are lower, as well as around the

next election, when risks are likely heightened.

The key is that these various questions were selected to cover a range of risky dissent

behaviors. If the target outcome is a low-risk dissent behavior, it might be reasonable to

assume that the purposive outcome variations in Young (2019) satisfy the required assumption

(Assumption 5). However, some high-risk dissent behaviors are unlikely to overlap with the

purposive variations. We take a conservative approach, and we interpret the sign-generalization

test only with respect to low-risk dissent behaviors.

C.3.3 Sign-Generalization Test

For each hypothesis, we combine purposive variations for T -validity and Y -validity (see Table

A1 for a summary). We have 2 (treatments)× 13 (outcomes) estimates for (H1), 2×12 for (H2),

and 2×12 for (H3). We recode all outcomes such that each hypothesis predicts negative effects.

We estimate effects using weighted least squares, accounting for the differential probability of

treatment defined in the original analysis, and use HC2 robust standard errors as implemented
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Hypothesis Variations for T -Validity Variations for Y -Validity

H1 General Fear, Political Fear, Control Hypothetical acts of dissent (12) + Behavioral measure (1)

H2 General Fear, Political Fear, Control Probability of experiencing different forms of repression (12)

H3 General Fear, Political Fear, Control Proportion of other opposition supporters who will
engage in hypothetical acts of dissent (12)

Table A1: Design of Purposive Variations for Young (2019).

in the estimatr package . Then, using the partial conjunction test (Section 6.2.2), we formally

quantify the proportion of negative causal effects for each hypothesis. Given the number of

comparisons is large for each hypothesis, the importance of employing the proposed approach

and properly accounting for multiple comparisons is high.

Figure A3 presents the results from the partial conjunction tests for each hypothesis.

We present the partial conjunction p-values for each threshold. Each p-value is colored by

their treatment condition, with the general fear condition (green) and political fear condition

(purple). The outcomes are represented by symbols, with the behavioral outcome presented

as dots, survey questions assessed for the current period as triangles, and survey questions

assessed for the future election as squares. For the first hypothesis, we find that 26 out of

26 outcomes (100%) have partial conjunction p-values less than the conventional significance

level 0.05. There is strong evidence for the sign-generalizability of the first hypothesis (H1),

that fear will reduce expressions of political dissent.

The evidence for the second and third hypotheses is more mixed. Young (2019) hypothe-

sizes that people in a state of fear will be more pessimistic about the risk of repression in the

second hypothesis (H2). We find that only 12 out of 24 outcomes (50%) have partial conjunc-

tion p-values less than 0.05, with support from the political fear condition but not from the

general fear condition, indicating that a weaker treatment might not generalize. Regarding

their belief about whether others will also engage in dissent (the third hypothesis), we find

that the partial conjunction p-values are less than 0.05 for 18/24 (75%) of the outcomes, where

again the political fear condition shows stronger support for the theory than the general fear

condition. Therefore, there exists stronger evidence for the political fear treatment than for

the general fear treatment.

C.3.4 C-validity

Young (2019)’s analysis does not provide a clear opportunity to test for context validity. The

author notes that Zimbabwe has “a long history of repressive violence designed to reduce

the political participation of opposition supporters” but that “when the study was carried

out, active violence against opposition supporters was very low,” which allowed for a context

where individuals are in a repressive regime but did not require “exposing participants to

unjustifiable risks” (p. 143). While the author does take hypothetical measures that prime

different political contexts, asking if they would engage in dissent in the current time period

as well as during the upcoming election, the measurements are not taken in different contexts.
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To formally evaluate C-validity, future experiments can include purposive variations in

context. For example, we can run one experiment close to an election and another far away

from an election. This will induce variations in authoritarian pressure, which we can use to test

the sign generalization in terms of C-validity. A multi-site experiment is a popular strategy to

induce variations in geography, and we can assess whether causal effects are generalizable to

other authoritarian regimes. The variations should be carefully chosen to meet the required

overlap assumption for sign-generalization.

C.3.5 X-validity

In the appendix of the original paper, the author compares her sample to two nationally

representative surveys across a number of important measures, including potential moderators.

Overall, she finds her sample is representative across a number of measures, including gender,

education, and many measures of victimization of pro-opposition individuals. She does find

differences among poverty rates, as well as the number of pro-opposition individuals who

reported that a family member had been killed for political reasons since 1980.

To account for some of the measurable differences, she conducts an analysis using an

IPW estimator with post-stratification weights, to match the Afrobarometer on gender, age,

education, and subjective measures of poverty. The resulting point estimates are very similar to

the original analysis, indicating that concerns of X-validity are not impacting the results, under

the assumption that the variables controlled for with the weights make sample selection and

treatment effect heterogeneity conditionally independent (Assumption 1). She also conducted

a sensitivity analysis on the number of strong opposition supporters in the sample, which

cannot be accounted for in the weighting analysis. It also indicates that the results are robust

to changes on this dimension, providing additional strength to the credibility.
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D Metaketa

D.1 Motivating Example

Information about politician performance, such as their effectiveness and responsiveness, is

an essential tool in democracy that can help voters hold politicians accountable and reduce

corruption. Metaketa I (Dunning et al., 2019) aimed to study whether voter information

campaigns, funded extensively by NGOs and nonprofits, are effective. The research team con-

ducted a coordinated study with a common definition of treatment, in which the researchers

worked with local partners to distribute “objective, nonpartisan performance information pri-

vately to individual voters within 2 months prior to the election” (p. 2) across five countries

with harmonized baseline and outcome measures. This allows for cumulative learning and

a replication of the same treatment across contexts; both valuable forms of external validity

analysis. Ultimately, Dunning et al. (2019) find null effects of voter information campaigns on

two outcomes of interest: vote choice, specifically voting for the incumbent, and voter turnout.

Strengths and Weaknesses for External Validity In many ways, Metaketas are de-

signed to explicitly address the four dimensions of external validity. For example, in the

Dunning et al. (2019) study, the inclusion of multiple, diverse sites improves both X- and

C-validity. However, the sites are themselves not random draws of the units and contexts of

theoretical interest, with a high concentration in the Global South. Effect-generalization to a

new context, such as a country with strong ethnic divisions, still requires strong assumptions.

The common arm treatment bundles the types of information provision groups use in

practice increases T -validity with respect to how information is commonly provided. However,

pragmatic designs can limit T -validity for specific target-treatments of theoretical interest,

such as public provision of information, or a information about politician actions vs outcomes.

One significant strength of the Metaketa is the harmonization of pre-treatment and out-

come measures. The common measures across sites increase Y -validity, ensuring differences

observed across sites are not attributable to different measurement strategies. However, co-

ordination does not inherently ensure Y -validity if the measurements do not align with the

target outcomes of interest, and the concerns we’ve outlined are still applicable. For example,

we must still assume ignorable outcome variations if the target outcome is strength of support,

or enthusiasm, for the incumbent, rather than the dichotomous vote for incumbent measured

in the study.

D.2 Sign-Generalization Test

In their original analysis, Dunning et al. (2019) use a meta-analysis of their multi-site ex-

periment to evaluate treatment effectiveness. The diversity of purposive variations on units,

treatments, outcomes, and contexts measured in the Metaketa bolster the overlap assumption

required for the sign-generalization test. We separately consider sign-generalization for the pri-

mary (H1) and secondary (H2) hypotheses listed in Section 3 of the supplementary materials
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for the original paper, which are reproduced below.8

(H1) Positive (negative) information increases (decreases) voter support for politicians.

(H2) Positive (negative) information increases (decreases) voter turnout.

Data For our re-analysis, we download the point estimates and standard errors from the

meta-analysis model, retrieved from the authors’ replication website

(https://egap.shinyapps.io/metaketa shiny/). This shiny app provides point estimates for all

primary and intermediate outcomes.9 We collect the estimates for the primary outcomes “vote

for incumbent” and “voter turnout”. The original study reports the effect of the treatment

among two subgroups — those for whom the information provided exceeds prior beliefs on

candidate performance (positive or “good news”) or falls short of their baseline beliefs (negative

or “bad news”), which we collect separately.

Analysis In our sign-generalization test, we consider two types of purposive variations, in-

cluding country, addressing C-validity, and the “good” vs. “bad news” subgroup analysis,

addressing X-validity. The overlap assumption requires we assume the target effect, for exam-

ple for a country not included in the study such as Nigeria, lies within the effects seen in the five

countries included in the study, and where the effect of the country-specific implementation

of information provision lies within the good and bad news groups observed. We conduct the

sign-generalization test separately for each hypothesis. This yields twelve estimates (6 sites ×
2 subgroups) which we combine with a partial conjunction test for each outcome.

Results Figure A4 presents the results for the sign-generalization test for the theory pre-

sented in Dunning et al. (2019) that information provision affects vote choice (H1) and voter

turnout (H2). The results indicate limited support for sign-generalizability; we cannot reject

the null that none of the variations support the theory for either hypothesis. This is unsurpris-

ing in the context of the meta-analysis findings from the original study, which found only one

statistically significant point estimate among the 24 estimates across contexts, subgroups, and

outcomes. Note that we design the sign-generalization test to assess whether the treatment

effect is positive or negative, as hypothesized in the original pre-analysis plan (H1 and H2

above), and we found that there is no evidence for either positive or negative causal effects.

In this Metaketa I, an alternative interpretation of the experimental result is that the null

effect is generalizable across six sites, which we could test with an appropriate equivalence test

(Hartman and Hidalgo, 2018), while this should be considered as a post-hoc interpretation as

the pre-analysis plan did not specify hypotheses in this way.

8We combine their component hypotheses (H1a and H1b; H2a and H2b) into a single hypothesis, respectively.

9We collect point estimates and clustered standard errors for each country using the following settings: we do

not include covariate controls; we exclude non-contested elections in the Uganda 2 study (default); we include

both LCV chairs and councilors in the Uganda 2 study (default); we weight each study equally (default).
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Figure A4: Sign-generalization test for Dunning et al. (2019) for the primary (vote for incum-

bent) and secondary (voter turnout) outcomes. Country is represented by color and subgroup

by symbol.

D.3 Effect-Generalization

An alternative to sign-generalization would be to ask if the effect of voter information provision

generalizes to a specific country outside of the six sites studied in the original trial, which

we will refer to as the target country. As outlined in Section 3.2.4, many times when we

consider generalizing to a different country we deal with both a change in the distribution of

unit characteristics, leading to concerns about X-validity, as well as contextual moderators,

leading to concerns of C-validity. We outline the steps a researcher can take to conduct such

an analysis, following Figure 2 in the main text.

Dunning et al. (2019) took care to design a treatment that mimics common practice for

information provision and relied on outcomes that are possible to measure in many target-

countries. Therefore, we assume that concerns of T - and Y -validity are addressed by the

design of the study, and consider the implemented treatment and outcome measures as our

target-treatment and target-outcome measures, and focus on effect-generalization for X- and

C-validity.

Step 1: Ask whether effect-generalization is possible. Recall that we must first evalu-

ate whether the assumptions required for effect-generalization are justified. X-validity requires

Assumption 1, which states that conditional on pre-treatment covariates, study participation

and the individual level treatment effect are conditionally independent. In Dunning et al.

(2019), the researchers collect a number of individual level characteristics in the baseline sur-

vey.10 In order to conduct effect-generalization, a researcher should conduct a survey measuring

these same variables, using the same measurement strategy, in the target country.

C-validity requires Assumption 4 which states that the causal effect for a given unit will

be the same regardless of whether they are in the original study or in the target country, after

10This includes gender, age, coethic and cogender with the incumbent, years of education, relative wealth,

incumbent party partisan attachment, vote history for last election, support for incumbent in last election, and

baseline belief in incumbent party clientelism.
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adjusting for context-moderators. To be plausible, we need to measure and adjust for context-

moderators that capture how the causal effect differs across the experimental countries and the

target country. In addition to possible individual level moderators, described above, Dunning

et al. (2019), measure a number of contextual measures that might affect treatment effect

heterogeneity.11 The researcher should collect these, using the same measurement strategy, in

their target country.

Step 2: Effect-Generalization (Estimate the T-PATE). After the researcher has care-

fully evaluated if these individual and contextual measures are likely to justify Assumptions 1

and 4, they can proceed to estimation of the T-PATE. This can be done with one of the three

class of estimators described in Section 5.1, including weighting-based, outcome-based and

doubly robust estimators (see extension to X- and C-validity together in Section 5.2). Which

estimator is best depends on whether the researcher can accurately model the sampling or

treatment effect heterogeneity processe (see Section 5.1.4). We generally suggest researchers

use doubly robust estimators, which are consistent if either process is correctly specified, and

the researcher need not know which one.

E External Validity Analysis of Observational Studies

E.1 Motivating Example

The role of fertility in women’s labor-force participation is an important question for under-

standing the economic impacts of childbearing on family, and in particular, women’s long term

labor-force participation and success. However, isolating the effect of fertility is complicated

by endogenous factors such as baseline female labor-force participation and fertility rate or

culturally influenced delays in marriage and childbearing. Angrist and Evans (1998) use a

natural experiment in which they note that families often have a preference for one child of

each sex, allowing them to evaluate the impact of having two children of the same sex (referred

to as the same-sex treatment) on third-child fertility decisions and labor-force participation of

married women, aged 21-35 with children under 18, using U.S. census data from 1980 to 1990.

They find significant negative effects of fertility on labor-force participation.

Natural Experiment We re-analyze two related studies that conduct an effect-generalization

analysis of the impact of fertility on women’s labor-force participation. We first consider De-

hejia, Pop-Eleches and Samii (2021), who extend the original Angrist and Evans (1998) study

to evaluate concerns about external validity using a world-wide dataset spanning the 1960 to

2010. This study relies on a natural experimental design in which the same-sex treatment is

considered “as-if” randomly assigned. In their original analysis, the authors find that macro-

level variables, including the proportion of educated mothers and the GDP of the country, are

important for explaining treatment effect heterogeneity.

11This includes electoral competitiveness; whether the country uses a secret ballot; to what extent voters

believe the country has free and fair elections; the Freedom House measure of freedom of the press; and the

polity measure of democratic strength.
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Instrumental Variables We also consider a study by Bisbee et al. (2017), who rely on

the same dataset, but use the same-sex treatment as an instrument for fertility decisions

(specifically, the decision to have a third child), and evaluate the impact on the labor-force

participation; ultimately they find similar patterns of generalizability as Dehejia, Pop-Eleches

and Samii (2021). These original studies each present an effect-generalization type analysis,

therefore we focus on a sign-generalization analysis to complement the original findings.

E.2 Sign-Generalization

Data In our re-evaluation of Dehejia, Pop-Eleches and Samii (2021), we consider the sign-

generalizability of the findings for the fertility outcome (“Have More Kids”) as well as labor-

force participation (“Economically Active”). We consider our analysis separately for each

outcome measure and design. To evaluate the natural experiment, we collect the 254 point

estimates and standard error estimates provided in Table A.1 of the original manuscript for

each country-year-outcome dyad. Similarly, for the instrumental variables study we collect the

112 point estimates and standard error estimates from Table A.1 of Bisbee et al. (2017) for

the “Economically Active” outcome evaluated in that study. We then use these estimates to

calculate the one-sided p-value, which we input into our proposed sign-generalization test.

Analysis We consider purposive variations across two contextual variables. Dehejia, Pop-

Eleches and Samii (2021) note that many countries, but not all, exhibit strong sex selectivity,

especially for male children and that patterns have changed over time. They also evaluate the

impact of macro-level variables, including gross domestic product. Based on these findings,

our evaluation of sign-generalization, we consider purposive variations across geography and

GDP, using the current World Bank income-group classification, and time, using the decade

of the census.

When considering Assumption 5, the overlap assumption that justifies the sign-generalization

test, we must assume that the effect in the target contexts lie within the convex hull of the

observed purposive variations. While the original analysis covers 49 countries, it does not in-

clude estimates world wide, therefore when we ask if the results generalize to a specific country

or year not included, we must assume the true effect is within the range of observed effects.

There are still limitations to our study for other dimensions of external validity. For example,

the authors limit their analysis to married women, aged 21-35 who have children under 18 at

the time of the census. Therefore, to have X-validity, we must assume the effects are within

the same convex hull for unwed or single, or older mothers, for whom the impact of fertility on

labor-force participation may differ due to differing financial and familial support structures.

For T -validity we either must focus on the same-sex treatment, or assume that a target treat-

ment, such as the impact of a third child given two children of opposite sex, lies within the

convex hull of the effects we have observed. These assumptions may be unreasonably strong

given we observe no purposive variations for X and T .
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Figure A5: Sign-generalization test for Dehejia, Pop-Eleches and Samii (2021). Outcomes

by study-design are represented by columns, country classification from the World Bank is

represented by symbol, and color represents the decade of census.

E.2.1 Results for Natural Experiment Design

Figure A5 presents results of our sign-generalization test for the natural experiment conducted

by Dehejia, Pop-Eleches and Samii (2021). Each panel represents a partial conjunction test

conducted within the outcome of interest, with purposive variations across decade (differen-

tiated by color) and income group (differentiated by symbol). We see that the results for

the effect of our same-sex treatment on fertility (“Have more kids”) demonstrate the strongest

support for external validity. We can reject the null in favor of the alternative that at least 104

of our 134 estimates (78%) support the theory. However, the sign-generalization test indicates

very little support for generalizability of the results the labor-force participation (“Econom-

ically Active”); this is unsurprising given most of the results were individually statistically

insignificant in the original analysis.

Consistent with the original authors’ finding that there is heterogeneity by country GDP,

we find that the strongest evidence supporting the theory among high and upper middle income

countries. In lower middle and low in come countries, the evidence is more mixed or does not

provide statistical evidence supporting the theory.

When combined with the original authors’ analysis, we see the value of both effect-

generalization and sign-generalization. The thorough effect-generalization done in Dehejia,

Pop-Eleches and Samii (2021) determines macro-level context moderators and micro-level

sources of effect heterogeneity. Our sign-generalization analysis complements this by weaken-

ing the required identifying assumptions.

E.2.2 Results for Instrumental Variables Design

Figure A6 presents results of our sign-generalization test for instrumental variables design con-

ducted by Bisbee et al. (2017). We represent purposive variations across decade (differentiated

by color) and income group (differentiated by symbol). As with the reduced form analysis,

the sign-generalization test indicates very little support for generalizability of the results for

labor-force participation (“Economically Active”). We can only reject the null that at least 6
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Figure A6: Sign-generalization test for Bisbee et al. (2017) for the “Economically Active”

outcome. Country classification from the World Bank is represented by symbol, and color

represents the decade of census.

of the results, out of 112, support the theory at the α = 0.05 level; this is unsurprising given

most of the results were individually statistically insignificant in the original analysis.

F Economics-Type Lab Experiment

F.1 General Discussion

In the main body of the paper, we focus on a lab-in-the-field example, Young (2019), which is

rooted in the psychological style of lab experiments. Political scientists also rely on economics-

style lab experiments. These experiments differ from psychology-style lab experiments on

many important dimensions, including the incentives, design, and outcome measures (Bol,

2019; Dickson, 2011). Economics-style lab experiments tend to measures concrete outcome

behaviors, including both individual and group behaviors, whereas psychology-style experi-

ments tend to focus on individual reported attitudes. Economics-style experiments often rely

on monetary incentives based on behavior instead of fixed compensation. The most important

difference might be in the design of the experiment. Economics-style experiments tend to

be more stylized and abstract, which gives the researcher more control over treatment and

avoids confounding factors that exist outside of the lab, whereas psychology-style experiments

emphasize realistic, and often bundled, treatments. In the following example, we consider the

four dimensions of external validity for one economics-style experiment, Kanthak and Woon

(2015).

F.2 Motivating Example

Legislatures in the United States from the local to the federal level exhibit a significant under-

representation of female office holders. Kanthak and Woon (2015) contribute to a robust

literature on factors that affect the decision of female legislators to run for office, and the

barriers they face in becoming officeholders, by isolating the impact of election aversion in

dissuading women from seeking office. Using a lab experiment conducted among undergrad-
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uate participants, researchers randomly assign a representative to be chosen among a pool of

anonymous volunteers, or elected by plurality vote, to conduct an objective problem-solving

task. They vary the private cost of running for election, as well as the electoral environment,

which can be either truthful or strategic and prone to misinformation. Ultimately, the authors

find that women are election averse — the fact that a representative is chosen by an election

dissuades women from putting forth their name for consideration, holding all else equal —

unless elections are both cost-less and completely truthful.

F.2.1 X-validity

A common criticism of lab experiments is their reliance on undergraduate participants. The

authors argue “undergraduates are at similar life stages, not yet having embarked on their

careers or started their families, and their youth and education should also make them less

susceptible to gender-based social constraints on running for office” (p. 597). In order to

addressX-validity, for example when generalizing to a real-world electorate, we need to account

for such factors by measuring and adjusting for pre-treatment covariates that make treatment

effect heterogeneity conditionally independent of the sample selection process, or we must

assume that these factors do not affect treatment effect heterogeneity.

F.2.2 T -validity

A common feature of economics-style lab experiments is their reliance on an abstract and

stylized treatment. In Kanthak and Woon (2015), the laboratory setting allows the researchers

to exert significant control over the experimental manipulation and therefore rule out common

explanations for a woman’s decision to run for office such as ability, risk preferences, and

societal beliefs. The anonymous voting also limits the impact of women’s perceptions about

biases voters may hold. This allows the researchers to attribute the gender gap to the electoral

context for deciding the representative (i.e. volunteer vs. election-based) and the associated

costs.

While abstract treatments commonly used in economics-style lab experiments allow a re-

searcher to isolate a single dimension of a complex treatment, it can affect T -validity. If

our target-treatment is a real-world election, this treatment is bundled with the societal be-

liefs about women and personal risk preferences and ability, dimensions which might dwarf

or exacerbate election aversion. To address T -validity, we must assume that the target real-

world election treatment has the same effect as the effect of the anonymous electoral context

treatment in the experiment.

F.2.3 Y -validity

Similar to field experiments, economics-style lab experiments often focus on behavioral out-

comes, such as the decision to run for election, as opposed to elicited attitudes and preferences

commonly used in survey and psychology-style lab experiments. While the focus on behavioral

measures may be closer to target-outcomes, such as a decision to run for office in a real-world

election, the local nature of the measurement in a hypothetical election game still requires that
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we must assume the difference between the experimental outcome and the target outcome is

ignorable.

F.2.4 C-validity

The abstract, collaborative interactions of many economics-style lab experiments may impact

context validity. For example, Kanthak and Woon (2015) rely on anonymous, computer-

based interactions to limit the biases women may experience when deciding whether to run

for office, and they focus on an objective problem-solving task with no gendered difference

in demonstrated success. However, women who decide to run in real-world situations do face

entrenched biases that may impact the effect of election aversion. For example, if our target

context is a real-world competitive election, we must collect and adjust for treatment effect

moderators that account for how the effect differs between the lab and real-world setting, such

as baseline measures of expectations about gender bias.

G Relationship to Other Concepts

Here we clarify the relationship between our definition of the external validity and other

concepts proposed in the literature.

Construct and ecological validity are important relevant concepts (Shadish, Cook and

Campbell, 2002; Morton and Williams, 2010). Both help external validity, but they are not

sufficient for external validity. Construct validity asks whether and how well experimental

results speak to a theory of interest. Targets of the external validity analysis are often chosen

based on a theory of interest, and thus, experiments with high construct validity are more

likely to be externally valid. However, construct validity does not imply external validity.

For example, as repeatedly found in the literature, small implementation differences in treat-

ments, which are indistinguishable from a theoretical perspective, often induce a large variation

in treatment effects. Ecological validity, also known as mundane experimental realism, asks

“whether the methods, materials, and settings of the research are similar to a given target

environment” (Morton and Williams, 2010). Again, experiments with high ecological validity

are more likely to be externally valid because the targets of the external validity analysis are

often chosen based on real-world settings. However, ecological validity might not be necessary

or sufficient if, for example, the goal of the experiment is to test a formal model of strategic

voting behavior.

Finally, we emphasize that concerns over external validity have a long history, and great

scholars have introduced a variety of definitions for external validity. Thus, naturally, our

definition of external validity cannot capture all conceptual and practical concerns raised in

the literature. Notwithstanding the importance and utility of other definitions, we offer a

definition of external validity based on the formal causal inference framework in Section 3.2,

which admits coherent empirical approaches for external validity. The main goal of this paper

is to develop this empirical approach for external validity.
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H Statistical Details of Proposed Methodologies

In this section, we provide proofs for all theoretical results we discussed in the paper.

H.1 Contextual Exclusion Restriction

Here, we offer a causal graphical approach to provide an alternative interpretation of contextual

exclusion restriction, even though their statistical meaning is the same.

Contextual exclusion restriction can be written in a causal DAG (Figure A7). Most im-

portantly, this causal DAG clearly shows that contextual exclusion restriction requires that

variable Ci has no direct causal effect on the outcome once fixing context-moderators.

We note that in the theory of the DAG, a DAG allows for any interactions between ex-

planatory variables to explain the outcome variable. Therefore, in the DAG (Figure A7), both

C and T have a path to the outcome Y (while the effect of C is mediated by M), and thus,

this mathematically means that the effect of T can be moderated by C. Therefore, the DAG

shows that the causal effect will be different across contexts because C changes the causal

relationship between the treatment and the outcome.

T Y

C

M

Treatment Outcome

Context

Moderator

Context

Figure A7: Causal DAG for Contextual Exclusion Restriction.

H.2 Proofs for Effect-Generalization

We examine estimation of the T-PATE when dealing with X- and C-validity together. The

well-researched problem of X-validity is a special case of this setting.

H.2.1 IPW Estimator

To account for the X- and C-validity together, we need to extend conventional sampling

weights that only consider the X-validity. In particular, we need two sampling weights:

πi =
1

Pr(Si = 1 | Ci = c,Mi,Xi)
(selection into experiments)

θi =
Pr(Ci = c∗ |Mi,Xi)

Pr(Ci = c |Mi,Xi)
(selection into contexts)

Using these two sampling weights, we can show the consistency of the inverse probability

weighted (IPW) estimator.
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Theorem A2 (Consistency of IPW Estimator)

Consider the following IPW estimator.

τ̂IPW ≡
∑R

i=1 θ̂iπ̂iδi1{Ci = c}SiTiYi∑R
i=1 θ̂iπ̂iδi1{Ci = c}SiTi

−
∑R

i=1 θ̂iπ̂i(1− δi)1{Ci = c}Si(1− Ti)Yi∑R
i=1 θ̂iπ̂i(1− δi)1{Ci = c}Si(1− Ti)

, (1)

where δi ≡ Pr(Ti = 1 | Si = 1, Ci = c,Mi,Xi) is the treatment assignment probability known

from the experimental design. We use R to denote the sum of the sample size in the experiment

(n) and in the target population data (N). Then, as R→∞,

τ̂IPW
p−→ EP∗ [Yi(T = 1, c∗)− Yi(T = 0, c∗)], (2)

when the sampling models are correctly specified, i.e., θ̂i
p−→ θi and π̂i

p−→ πi.

Proof. By the weak law of large number, 1
R

∑R
i=1 θ̂iπ̂iδi1{Ci = c}SiTiYi

p−→ E[θiπiδi1{Ci =

c}SiTiYi] under the standard regularity conditions and the correct specification of the sampling

models.

E[πiθiδi1{Ci = c}SiTiYi]

=
∑

m∈M

∑
x∈X

E[πiθiδi1{Ci = c}SiTiYi |Mi = m,Xi = x] Pr(Mi = m,Xi = x)

=
∑

m∈M

∑
x∈X

Pr(Ci = c∗ |Mi = m,Xi = x)

Pr(Ci = c |Mi = m,Xi = x)

×E[πiδi1{Ci = c}SiTiYi |Mi = m,Xi = x] Pr(Mi = m,Xi = x)

=
∑

m∈M

∑
x∈X

Pr(Ci = c∗ |Mi = m,Xi = x)

Pr(Ci = c |Mi = m,Xi = x)
× Pr(Ci = c |Mi = m,Xi = x)

×E[πiδiSiTiYi | Ci = c,Mi = m,Xi = x] Pr(Mi = m,Xi = x)

=
∑

m∈M

∑
x∈X

Pr(Ci = c∗ |Mi = m,Xi = x)

Pr(Ci = c |Mi = m,Xi = x)
× Pr(Ci = c |Mi = m,Xi = x)

× 1

Pr(Si = 1 | Ci = c,Mi = m,Xi = x)

×E[δiSiTiYi | Ci = c,Mi = m,Xi = x] Pr(Mi = m,Xi = x)

=
∑

m∈M

∑
x∈X

Pr(Ci = c∗ |Mi = m,Xi = x)

Pr(Ci = c |Mi = m,Xi = x)
× Pr(Ci = c |Mi = m,Xi = x)

× 1

Pr(Si = 1 | Ci = c,Mi = m,Xi = x)
× Pr(Si = 1 | Ci = c,Mi = m,Xi = x)

×E[δiTiYi | Si = 1, Ci = c,Mi = m,Xi = x] Pr(Mi = m,Xi = x)

=
∑

m∈M

∑
x∈X

Pr(Ci = c∗ |Mi = m,Xi = x)

Pr(Ci = c |Mi = m,Xi = x)
× Pr(Ci = c |Mi = m,Xi = x)

× 1

Pr(Si = 1 | Ci = c,Mi = m,Xi = x)
× Pr(Si = 1 | Ci = c,Mi = m,Xi = x)

× 1

Pr(Ti = 1 | Si = 1, Ci = c,Mi = m,Xi = x)

×E[TiYi | Si = 1, Ci = c,Mi = m,Xi = x] Pr(Mi = m,Xi = x)

2



=
∑

m∈M

∑
x∈X

Pr(Ci = c∗ |Mi = m,Xi = x)

Pr(Ci = c |Mi = m,Xi = x)
× Pr(Ci = c |Mi = m,Xi = x)

× 1

Pr(Si = 1 | Ci = c,Mi = m,Xi = x)
× Pr(Si = 1 | Ci = c,Mi = m,Xi = x)

× 1

Pr(Ti = 1 | Si = 1, Ci = c,Mi = m,Xi = x)
× Pr(Ti = 1 | Si = 1, Ci = c,Mi = m,Xi = x)

×E[Yi(1) | Si = 1, Ci = c,Mi = m,Xi = x] Pr(Mi = m,Xi = x)

=
∑

m∈M

∑
x∈X

E[Yi(1) | Si = 1, Ci = c,Mi = m,Xi = x]

×Pr(Ci = c∗ |Mi = m,Xi = x) Pr(Mi = m,Xi = x)

=

{ ∑
m∈M

∑
x∈X

E[Yi(1) |Mi = m,Xi = x] Pr(Mi = m,Xi = x | Ci = c∗)

}
Pr(Ci = c∗)

= EP∗ [Yi(T = 1, c∗)]× Pr(Ci = c∗).

Similarly, we can show that 1
R

∑R
i=1 θ̂iπ̂i(1− δi)1{Ci = c}Si(1− Ti)Yi

p−→ EP∗ [Yi(T = 0, c∗)]×
Pr(Ci = c∗), 1

R

∑R
i=1 θ̂iπ̂iδi1{Ci = c}SiTi

p−→ Pr(Ci = c∗), and 1
R

∑R
i=1 θ̂iπ̂i(1 − δi)1{Ci =

c}Si(1− Ti)
p−→ Pr(Ci = c∗). This completes the proof. 2

H.2.2 Weighted Least Squares

Theorem A3 (Consistency of Weighted Least Squares Estimator)

Consider the following weighted least squares estimator.

(α̂, τ̂wLS, γ̂) = argmin
α,τ,γ

1

n

n∑
i=1

wi(Yi − α− τTi − Z>i γ)2 (3)

where wi = θ̂iπ̂i{δiTi + (1− δi)(1− Ti)}, and Zi are pre-treatment covariates measured within

the experiment. Then, as n→∞,

τ̂wLS
p−→ EP∗ [Yi(T = 1, c∗)− Yi(T = 0, c∗)], (4)

when the sampling models are correctly specified, i.e., θ̂i
p−→ θi and π̂i

p−→ πi.

Proof. We rely on the proof technique by Lin (2013). Using the estimated coefficient γ̂, we

can rewrite the main objective function as follows.

(α̂, τ̂wLS) = argmin
α,τ,γ

1

n

n∑
i=1

wi{(Yi − Z>i γ̂)− α− τTi}2.

Therefore, using the well-known equivalence between the weighted least squares regression and

the weighted difference-in-means, we can write that

τ̂wLS =

∑n
i=1wi(Yi − Z>i γ̂)Ti∑n

i=1wiTi
−
∑n

i=1wi(Yi − Z>i γ̂)(1− Ti)∑n
i=1wi(1− Ti)

.

We now further examine this quantity.

τ̂wLS =

∑n
i=1wi(Yi − Z>i γ̂)Ti∑n

i=1wiTi
−
∑n

i=1wi(Yi − Z>i γ̂)(1− Ti)∑n
i=1wi(1− Ti)
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=

∑n
i=1wiYiTi∑n
i=1wiTi

−
∑n

i=1wiYi(1− Ti)∑n
i=1wi(1− Ti)

+

{∑n
i=1wiZ

>
i Ti∑n

i=1wiTi
−
∑n

i=1wiZ
>
i (1− Ti)∑n

i=1wi(1− Ti)

}
γ̂.

Using the weak law of large number, 1
n

∑n
i=1wiZ

>
i Ti

p−→ E[wiZ
>
i Ti],

1
n

∑n
i=1wiZ

>
i (1 − Ti)

p−→
E[wiZ

>
i (1− Ti)], 1

n

∑n
i=1wiTi

p−→ E[wiTi], and 1
n

∑n
i=1wi(1− Ti)

p−→ E[wi(1− Ti)].
We can also show that

E[wiZ
>
i Ti] =

∑
m∈M

∑
x∈X

θiπiE[Zi | Si = 1, Ci = c,Mi = m,Xi = x]> Pr(Mi = m,Xi = x | Si = 1, Ci = c)

E[wiZ
>
i (1− Ti)] =

∑
m∈M

∑
x∈X

θiπiE[Zi | Si = 1, Ci = c,Mi = m,Xi = x]> Pr(Mi = m,Xi = x | Si = 1, Ci = c)

E[wiTi] =
∑

m∈M

∑
x∈X

θiπi Pr(Mi = m,Xi = x | Si = 1, Ci = c)

E[wi(1− Ti)] =
∑

m∈M

∑
x∈X

θiπi Pr(Mi = m,Xi = x | Si = 1, Ci = c).

Combined together, {∑n
i=1wiZ

>
i Ti∑n

i=1wiTi
−
∑n

i=1wiZ
>
i (1− Ti)∑n

i=1wi(1− Ti)

}
γ̂

p−→ 0,

given that γ̂ converges to some constant γ∗ under the standard regularity conditions.

Finally, we note that∑n
i=1wiYiTi∑n
i=1wiTi

−
∑n

i=1wiYi(1− Ti)∑n
i=1wi(1− Ti)

=

∑R
i=1 θ̂iπ̂iδi1{Ci = c}SiTiYi∑R
i=1 θ̂iπ̂iδi1{Ci = c}SiTi

−
∑R

i=1 θ̂iπ̂i(1− δi)1{Ci = c}Si(1− Ti)Yi∑R
i=1 θ̂iπ̂i(1− δi)1{Ci = c}Si(1− Ti)

= τ̂IPW
p−→ EP∗ [Yi(T = 1, c∗)− Yi(T = 0, c∗)].

where we use Theorem A2. This completes the proof. 2

H.2.3 Outcome-Based Estimator

Theorem A4 (Consistency of Outcome-based Estimator)

Consider the following weighted least squares estimator.

τ̂out =
1

N

∑
j∈P∗

{ĝ1(Xj ,Mj)− ĝ1(Xj ,Mj)}

where

ĝ1(Xj ,Mj) ≡ Ê(Yi | Ti = 1,Mj ,Xj , Si = 1, Ci = c),

ĝ0(Xj ,Mj) ≡ Ê(Yi | Ti = 0,Mj ,Xj , Si = 1, Ci = c).

Then, as N →∞,

τ̂out
p−→ EP∗ [Yi(T = 1, c∗)− Yi(T = 0, c∗)], (5)

when the outcome models are correctly specified, i.e., ĝ1(x,m)
p−→ E(Yi | Ti = 1,m,x, Si =

1, Ci = c), and ĝ0(x,m)
p−→ E(Yi | Ti = 0,m,x, Si = 1, Ci = c).
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Proof. Due to the weak law of large number,

1

N

∑
j∈P∗

{ĝ1(Xj ,Mj)− ĝ1(Xj ,Mj)}

p−→
∑

m∈M

∑
x∈X
{E(Yi | Ti = 1,Mi = m,Xi = x, Si = 1, Ci = c)− E(Yi | Ti = 0,Mi = m,Xi = x, Si = 1, Ci = c)}

×Pr(Mi = m,Xi = x | Ci = c∗)

= EP∗ [Yi(T = 1, c∗)− Yi(T = 0, c∗)],

where we used Theorem A1 in the final equality. This completes the proof. 2

H.2.4 Doubly Robust Estimator

To account for potential model misspecification, we explicitly parameterize the outcome models

and sampling weights. First, we define outcome models with a finite dimensional parameter

ξ; g1(Mi,Xi; ξ1) and g1(Mi,Xi; ξ0). We use ξ∗ to denote correctly specified outcome models,

that is,

g1(Mi,Xi; ξ
∗
1) = E(Yi | Ti = 1,Mi,Xi, Si = 1, Ci = c), (6)

g0(Mi,Xi; ξ
∗
0) = E(Yi | Ti = 0,Mi,Xi, Si = 1, Ci = c). (7)

Similarly, we define sampling weights as a finite dimensional parameter ψ; θ(Mi,Xi;ψC) and

π(Mi,Xi;ψS). We use ψ∗ to denote correctly specified sampling weights, that is,

π(Mi,Xi;ψ
∗
S) =

1

Pr(Si = 1 | Ci = c,Mi,Xi)

θ(Mi,Xi;ψ
∗
C) =

Pr(Ci = c∗ |Mi,Xi)

Pr(Ci = c |Mi,Xi)

Then, using these extended sampling weights and outcome models, we propose the augmented

IPW (AIPW) estimator as follows.

Theorem A5 (Double Robustness of AIPW Estimator)

Consider the following AIPW estimator.

τ̂AIPW ≡
∑R

i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)δi1{Ci = c}SiTi{Yi − g1(Mi,Xi; ξ̂1)}∑R
i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)δi1{Ci = c}SiTi

−
∑R

i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)(1− δi)1{Ci = c}Si(1− Ti){Yi − g0(Mi,Xi; ξ̂0)}∑R
i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)(1− δi)1{Ci = c}Si(1− Ti)

+

∑R
i=1 1{Ci = c∗}{g1(Mi,Xi; ξ̂1)− g0(Mi,Xi; ξ̂0)}∑R

i=1 1{Ci = c∗}
,

where we use R to denote the sum of the sample size in the experiment (n) and in the target

population data (N). Then, if the outcome models or sampling weights are correctly specified,

the AIPW estimator is consistent. Formally,

if {ξ̂1
p−→ ξ∗1 , and ξ̂0

p−→ ξ∗0} or {ψ̂C
p−→ ψ∗C , and ψ̂S

p−→ ψ∗S},

τ̂AIPW
p−→ EP∗ [Yi(T = 1, c∗)− Yi(T = 0, c∗)], as R→∞.
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Proof. Following the standard convention (Tsiatis, 2006), we assume that ξ̂1 and ξ̂0 converge

in probability to some value ξ̃1 and ξ̃0 as R goes to infinity. When ξ̃1 = ξ∗1 and ξ̃0 = ξ∗0 , we will

say the outcome models are correctly specified. Similarly, ψ̂C and ψ̂S converge in probability

to some value ψ̃C and ψ̃S as R goes to infinity. When ψ̃C = ψ∗C and ψ̃S = ψ∗S , we will say the

sampling weights are correctly specified.

First, we consider cases under which sampling weights are correctly specified. Then, based

on Theorem A2, we know that∑R
i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)δi1{Ci = c}SiTiYi∑R
i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)δi1{Ci = c}SiTi

(8)

−
∑R

i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)(1− δi)1{Ci = c}Si(1− Ti)Yi∑R
i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)δi1{Ci = c}Si(1− Ti)

(9)

p−→ EP∗ [Yi(T = 1, c∗)− Yi(T = 0, c∗)]. (10)

Therefore, we need to verify that∑R
i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)δi1{Ci = c}SiTig1(Mi,Xi; ξ̂1)∑R

i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)δi1{Ci = c}SiTi

−
∑R

i=1 1{Ci = c∗}g1(Mi,Xi; ξ̂1)∑R
i=1 1{Ci = c∗}

p−→ 0∑R
i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)(1− δi)1{Ci = c}Si(1− Ti)g0(Mi,Xi; ξ̂0)∑R

i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)(1− δi)1{Ci = c}Si(1− Ti)

−
∑R

i=1 1{Ci = c∗}g0(Mi,Xi; ξ̂0)∑R
i=1 1{Ci = c∗}

p−→ 0.

Using the weak law of large number, we obtain

1

R

R∑
i=1

θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)δi1{Ci = c}SiTig1(Mi,Xi; ξ̂1)
p−→ E[θiπiδi1{Ci = c}SiTig1(Mi,Xi; ξ̃1)],

(11)

where we use θi and πi to denote the correctly specified weights. Using the same proof strategy

as Theorem A2,

E[θiπiδi1{Ci = c}SiTig1(Mi,Xi; ξ̃1)] (12)

=
∑

m∈M

∑
x∈X

{
g1(Mi,Xi; ξ̃1) Pr(Mi = m,Xi = x | Ci = c∗)

}
Pr(Ci = c∗). (13)

Therefore, we get∑R
i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)δi1{Ci = c}SiTig1(Mi,Xi; ξ̂1)∑R

i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)δi1{Ci = c}SiTi
p−→ E

{
g1(Mi,Xi; ξ̃1) | Ci = c∗

}

It is easy to see that

∑R
i=1 1{Ci = c∗}g1(Mi,Xi; ξ̂1)∑R

i=1 1{Ci = c∗}
p−→ E

{
g1(Mi,Xi; ξ̃1) | Ci = c∗

}
. We can

use the similar proof for the expression for the control group. Thus, we obtain the desired

result for cases when sampling weights are correctly specified.
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Next, we consider cases under which the outcome models are correctly specified. In this

case, we have ∑R
i=1 1{Ci = c∗}{ĝ1(Mi,Xi)− ĝ0(Mi,Xi)}∑R

i=1 1{Ci = c∗}
(14)

p−→ EP∗ [Yi(T = 1, c∗)− Yi(T = 0, c∗)]. (15)

Therefore, we need to verify that∑R
i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)δi1{Ci = c}SiTi{Yi − g1(Mi,Xi; ξ̂1)}∑R

i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)δi1{Ci = c}SiTi
p−→ 0∑R

i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)(1− δi)1{Ci = c}Si(1− Ti){Yi − g0(Mi,Xi; ξ̂0)}∑R
i=1 θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)(1− δi)1{Ci = c}Si(1− Ti)

p−→ 0

Now, using the weak law of large number, we obtain

1

R

R∑
i=1

R∑
i=1

θ(Mi,Xi; ψ̂C)π(Mi,Xi; ψ̂S)δi1{Ci = c}SiTi{Yi − g1(Mi,Xi; ξ̂1)}

p−→ E[θ(Mi,Xi; ψ̃C)π(Mi,Xi; ψ̃S)δi1{Ci = c}SiTi{Yi − g1(Mi,Xi;ψ
∗
1)}].

Now, we can rewrite the expression as follows.

E[θ(Mi,Xi; ψ̃C)π(Mi,Xi; ψ̃S)δi1{Ci = c}SiTi{Yi − g1(Mi,Xi;ψ
∗
1)}]

=
∑

m∈M

∑
x∈X

E[θ(Mi,Xi; ψ̃C)π(Mi,Xi; ψ̃S)δi1{Ci = c}SiTi{Yi − g1(Mi,Xi;ψ
∗
1)} |Mi = m,Xi = x]

×Pr(Mi = m,Xi = x)

=
∑

m∈M

∑
x∈X

E[Ti{Yi − g1(Mi,Xi;ψ
∗
1)} | Si = 1, Ci = c,Mi = m,Xi = x]

×δiθ(Mi,Xi; ψ̃C)π(Mi,Xi; ψ̃S)× Pr(Si = 1, Ci = c |Mi = m,Xi = x) Pr(Mi = m,Xi = x)

=
∑

m∈M

∑
x∈X
{E[Yi | Ti = 1, Si = 1, Ci = c,Mi = m,Xi = x]− g1(Mi,Xi;ψ

∗
1)}

×θ(Mi,Xi; ψ̃C)π(Mi,Xi; ψ̃S)× Pr(Si = 1, Ci = c |Mi = m,Xi = x) Pr(Mi = m,Xi = x)

= 0

which provides the desired result for the treatment group. We can use the similar proof for

the expression for the control group. Therefore, this provides the proof for cases when the

outcome models are correctly specified. This completes the proof. 2

H.3 Proofs for Sign-Generalization

H.3.1 Proof: A Valid Test of the Union Null is valid for the Target Null.

We want to show that the under the target null H∗0 : EP{Y ∗i (T = 1, c) − Y ∗i (T = 0, c)} ≤ 0,

Pr(p̃ ≤ α) ≤ α where p̃ ≡ maxk pk and each p-value is valid for its corresponding null

hypothesis.
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First, under Assumption 5, the target null hypothesis implies the union of the K null

hypotheses. Formally,

H∗0 ⇒
K⋃
k=1

Hk
0 .

Under the union of the K null hypotheses, there is at least one true null hypothesis. We refer

to it as H`
0 and its corresponding p-value as p`. Then,

Pr(p̃ ≤ α) = Pr

{
K⋂
k=1

(pk ≤ α)

}
≤ Pr(p` ≤ α) ≤ α.

Taken together, under the target null hypothesis, Pr(p̃ ≤ α) ≤ α, which completes the proof.

2

H.3.2 Partial-Conjunction Test

In the partial conjunction test, we consider the following hypothesis.

H̃r
0 :

K∑
k=1

1{Hk
0 is false} < r

versus H̃r
1 :

K∑
k=1

1{Hk
0 is false} ≥ r (16)

For completeness, we reproduce all the necessary formal results on the partial conjunction test.

Result 1 (Validity of Partial Conjunction Test (Benjamini and Heller, 2008))

p̃(r) is a valid p-value for the partial conjunction null hypothesis H̃r
0 .

Proof. We want to show that under the partial conjunction null hypothesis H̃r
0 , Pr(p̃(r) ≤

α) ≤ α.
Under the partial conjunction null hypothesis, there are at least K−r+1 true null hypothe-

ses. We use q1, . . . , qK−r+1 to denote p-values corresponding to such true null hypotheses.

Now, we consider the main quantity.

Pr(p̃(r) ≤ α) ≤ Pr
{

(K − r + 1)p(r) ≤ α
}

= Pr

(
p(r) ≤

α

K − r + 1

)
. (17)

This implies that at least one of {q1, . . . , qK−r+1} is smaller than α
K−r+1 . Therefore,

Pr(p̃(r) ≤ α) ≤ Pr

(
p(r) ≤

α

K − r + 1

)
≤ Pr

{
K−r+1⋃
i=1

(
qi ≤

α

K − r + 1

)}

≤
K−r+1∑
i=1

Pr

(
qi ≤

α

K − r + 1

)
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≤ α,

where the first inequality comes from equation (17), the second from a definition of {q1, . . . , qK−r+1},
the third from the union bound, and the final from the fact that each p-value is valid for its

corresponding null hypothesis. This completes the proof. 2

Result 2 (Reporting all thresholds (Benjamini and Heller, 2008))

No additional multiple testing correction is required when considering p-value p̃(r) for all levels

r ∈ {1, . . . ,K}. Formally, suppose the partial conjunction null holds when r = s, i.e., H̃s
0 is

true. Then, Pr{
⋃K
r=s(p̃(r) ≤ α)} ≤ α.

Proof. By the definition of p̃(r), it satisfies the monotonicity, that is, p̃(r) ≤ p̃(r+1). Therefore,

under the partial conjunction null H̃s
0 ,

Pr{
K⋃
r=s

(p̃(r) ≤ α)} = Pr{p̃(s) ≤ α} ≤ α,

where the first equality follows from the monotonicity, and the second from the validity of the

partial conjunction p-value (Result 1). 2

Result 3 (Confidence Interval of True Non-Nulls (Benjamini and Heller, 2008))

Define r∗ to be the number of true non-nulls. Then, Pr(r∗ ∈ [rmax,K]) ≥ 1 − α where

rmax ≡ max{r : p̃(r) ≤ α}.

Proof. If r∗ = K, then Pr(r∗ ∈ [rmax,K]) = 1. Therefore, we consider cases where r∗ < K.

Pr(r∗ ∈ [rmax,K]) = Pr(r∗ ≥ rmax)

= Pr(p̃(r∗+1) > α)

= 1− Pr(p̃(r∗+1) ≤ α)

≥ 1− α

where the first equality follows from the definition of the confidence interval, the second from

the definition of rmax, and the third from a rule of probability. When the true number of

non-nulls is r∗, H̃r∗+1
0 holds. Therefore, Pr(p̃(r∗+1) ≤ α) ≤ α, from which the final inequality

follows. This completes the proof. 2
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I Validation Study Using Multi-Site Experiment

In this section, we evaluate the performance of the T-PATE estimators using multi-site exper-

iments by Meager (2019) as an experimental benchmark. At its core, we view one site as the

target population data and the average treatment effect in this target site as the T-PATE, i.e.,

our target of inference. We can then evaluate how well the T-PATE estimator can generalize

from the remaining sites to this target site.

There are two key advantages of using multi-site experiments to evaluate the performance

of the T-PATE estimator. First, in contrast to conventional simulation studies, we use the

data from the real empirical application (Meager, 2019), and thus, the data generating process

and sampling models are realistic. Most importantly, identification and modeling assumptions

necessary for estimating the T-PATE are not guaranteed to be satisfied as in the real empirical

application. Thus, it provides a clean evaluation design. Second, unlike the direct application

of the T-PATE estimator to a single experiment, we have an experimental benchmark estimate

of the T-PATE, as it is simply the SATE in the target population data. Therefore, we can

clearly evaluate whether the T-PATE estimators can recover this experimental benchmark.

In summary, this validation study helps us evaluate whether both identification and mod-

eling assumptions are plausible in the real-world application, and the proposed estimators

can estimate the T-PATE without bias. We find that the outcome-based and doubly robust

estimators could recover the experimental benchmark, and yet weighting-based estimators did

not perform well. This result implies that modeling assumptions are as important as the iden-

tification assumptions for generalization. As emphasized in Section 5.1.4, we see the benefit

of the doubly robust estimator — consistent when either the outcome or sampling model is

correctly specified.

Finally, we also note here the scope condition of this validation study; this is an empir-

ical validation study with one multi-site experiment. Thus, like any other causal inference

methodologies, whether identification and modeling assumptions are plausible in each study

depends on applications, and should be evaluated with domain knowledge.

I.1 Design of Evaluation

Using Meager (2019), we re-analyze microcredit experiments conducted by different authors

across four sites.1 These studies all involve a similar treatment — expanding access to credit —

implemented across different countries. We consider causal effects on three economic outcomes:

household-level revenues, profits, and expenditures.2

Estimation of the T-PATE requires both identification and modeling assumptions. If any

of the following assumptions are violated, we will be able to detect such violations because the

1We focus on the four studies from her original analysis that have overlapping baseline outcome measures,

including Angelucci, Karlan and Zinman (2015), Attanasio et al. (2015), Augsburg et al. (2015), and Crépon

et al. (2015).

2To improve comparability across sites, we standardize the outcomes by the mean and standard deviation

of control group baseline outcome.
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T-PATE estimator will differ from the true T-PATE. First, we consider the identification of

the T-PATE, which requires strong assumptions regarding each dimension of external validity.

For X-validity, analysts need to assume Ignorability of Sampling and Treatment Effect Het-

erogeneity (Assumption 1). To make this assumption plausible, we adjust for seven covariates

that are measured across sites, i.e., gender, age, income, the amount spent on food, and base-

line measures of the three economic outcomes. For T -validity, we need to assume ignorable

treatment-variations (Assumption 2). While the treatment is similar in each study, each site

implemented a slightly different treatment regime, such as whether the loan had individual or

group liability; whether it was collateralized; the interest rate; and if the loans were targeted

at specific groups, such as women. Therefore, it is possible that this required assumption

is violated. Similarly, for Y -validity, we need to assume ignorable outcome-variations (As-

sumption 3). While we follow Meager (2019)’s standardization protocol across sites, each site

varied in endpoint length, and outcome measures were not specifically coordinated across sites.

Therefore, it is possible that the required assumption of ignorable outcome-variations is vio-

lated. Finally, for C-validity, these four sites are from four different countries — Bosnia and

Herzegovina, Mexico, Mongolia, and Morocco — with different demographic, political, and

economic characteristics. Therefore, this provides us with challenging generalization tasks.

While we cannot directly evaluate these assumptions, by evaluating how well we can recover

the T-PATE, we can indirectly see whether these necessary assumptions are plausible.

We will consider three classes of estimators proposed in Section 5: weighting-based, outcome-

based, and doubly-robust estimators, each having different modeling assumptions. Weighting-

based estimators include IPW and weighted least squares. Sampling weights are estimated

via calibration.3 For the outcome-based estimators, we use OLS and a more flexible model,

BART. We implement two doubly robust estimators; the AIPW with OLS and the AIPW

with BART. As explained above, in each estimator, we adjust for the following seven vari-

ables: gender, age, income, the amount spent on food, and baseline measures of the three

outcomes. For each monetary variable (income, the amount spent on food, and the baseline

outcome measures), we log the variable and standardize it, within each site, using the control

group mean and standard deviation. We also include dummy variables for if the monetary

measure is zero, and for if the baseline outcome measure is missing. Finally, following Meager

(2019), we also include a dummy variable for whether a household has an existing business, a

dimension on which the author finds significant treatment effect heterogeneity.

We define one site as the target population data, and then combine the three remaining

sites as the experimental data. We then use the three classes of the T-PATE estimators

(proposed in Section 5) on the experimental data in order to estimate the T-PATE in the

target site. Finally, we compare this estimate to the average causal effect in the target site,

3We had to drop some variables that lead calibration weights to fail to converge. These variables typically

involved the indicators for whether a monetary variable was zero or missing. But calibration also required

dropping some of the monetary values in certain sites. This instability of the weight estimation results in the

poor performance of weighting-based estimators, as we see below.
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which can be estimated via the difference-in-means. We repeat this exercise using all four sites

as the target population data, and estimate the T-PATE for all three outcomes of interest.

We have 12 estimates in total.

Formally, we denote data from site k by Dk where k ∈ {1, 2, 3, 4}, and we denote outcome

variable by Yj where j ∈ {1, 2, 3} as there are three economic outcomes. Suppose we view

Site 1 as the target population, and data from Site 2, Site 3, Site 4 as the experimental data.

Then, for outcome Yj , the T-PATEj1 is the average causal effect on outcome Yj in Site 1, which

can be estimated with the difference-in-means using data D1. We will use the data from Site

2, Site 3, Site 4 {D2,D3,D4}, to construct an estimator T̂-PATEj1 and its 95% confidence

interval ĈIj1. By repeating this exercise using all four sites and three outcomes of interest,

we are going to evaluate the average absolute bias and the coverage of the T-PATE estimator

across 12 estimates.

Average Absolute Bias =
1

12

3∑
j=1

4∑
k=1

|T-PATEjk − T̂-PATEjk|

Coverage =
1

12

3∑
j=1

4∑
k=1

1{T-PATEjk ∈ ĈIjk}

I.2 Results

Table A1 presents results. As a reference, we also report the SATE estimate, which is the

difference-in-means of the experimental data without any adjustment. With this reference, we

can understand how much bias the proposed T-PATE estimator can reduce in practice.

First, we find that all of the estimators, except for the IPW estimator, reduce bias by a large

amount. For example, the outcome-based BART estimator reduces by about 95% compared

to the SATE. Second, when we consider the coverage of the 95% confidence intervals, we

find that outcome-based and doubly robust estimators have close to the nominal coverage.

In contrast, the weighting-based estimators exhibit significant under-coverage as low as the

SATE estimate.4

Several points are worth emphasizing. First, the fact that both outcome-based and doubly

robust estimators could recover the experimental benchmark with small bias and desirable

coverage rates suggests that identification and modeling assumptions necessary for the T-

PATE estimation are plausible in this application even with the limited set of control variables.

This is not trivial because there exists a significant amount of the external validity bias to

be corrected as we see that the SATE estimator has a large bias and severe under-coverage.

4The poor performance of the weighting based estimators indicates that the sampling weights in our example

are likely to be misspecified. Within the data, the distributions of the logged and standardized monetary

variables, particularly the previous outcomes, are bimodal since a large fraction of families has no previous

business revenues, profits, or expenditures. We included binary variables to capture this bimodal nature, but

the calibration still led to extreme weights. Even with a maximum weight cap of 10, the distribution of weights

for these sites has a long tail, putting relatively extreme weight on a few observations. This demonstrates the

difficulty of correctly specifying the sampling model in this example.
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Estimator Average Absolute Bias Coverage

SATE 0.067 0.50 (6/12)

Weighting-based

IPW 0.082 0.58 (7/12)

wLS 0.027 0.50 (6/12)

Outcome-based

OLS 0.038 0.92 (11/12)

BART 0.004 0.92 (11/12)

Doubly Robust

AIPW with OLS 0.044 0.92 (11/12)

AIPW with BART 0.012 0.92 (11/12)

Table A1: Validation with Microcredit Multisite Experiments.

Second, the finding that the outcome-based and doubly robust estimators performed well and

weighting-based estimators did not perform well implies that modeling assumptions are as

important as the identification assumptions, and that outcome-models are more likely to be

correctly specified and the sampling model (i.e., sampling weights) is likely to be misspecified.

Finally, as emphasized in Section 5.1.4, this empirical validation study shows the benefit

of the doubly robust estimator, which is consistent when either the sampling or outcome

model is correctly specified. Even though sampling weights are likely to be misspecified,

the AIPW estimators reduce, or nearly eliminate, bias and exhibit near nominal coverage of

the experimental benchmark because the outcome model is likely to be properly specified.

This validation study shows the importance of this double robustness property for applied

researchers.

J Simulations

To evaluate the performance of the T-PATE estimators, we conduct two sets of simulations.

In our first set of simulations, we fully simulate the data generating process and control the

parameterization of the sampling model and treatment effect heterogeneity. In our second set

of simulations, we use the Broockman and Kalla (2016) data and CCES data as a basis for the

sampling and treatment effect heterogeneity model. In combination, these simulations clarify

conditions under which various estimators discussed in Section 5 can recover the T-PATE.

J.1 Full Simulations

J.1.1 Data Generating Process

Setup. In our first set of simulation, we fully control the data-generating process, including

both the sampling and treatment effect heterogeneity models. We start by drawing a sam-

ple of size N ∈ {1000, 2000, 8000}. For each unit i, we draw ten pre-treatment covariates,

13



Xi1, . . . , Xi,10, each drawn independently from the standard normal distribution. We draw

the experimental sample from our N original units with Si ∼ Bernoulli(πi) where Si takes

the value of one if unit i is sampled into the experimental sample and takes the value of zero

otherwise. The sampling probability π is defined as

Pr(Si = 1 | Xi) ≡ πi =
exp(Xi1 + . . .+Xi5)

1 + exp(Xi1 + . . .+Xi5)
. (18)

This sampling probability is 0.5 on average, implying that our experimental sample takes

on sizes n = {500, 1000, 4000}, in expectation. We define our target sample as those units

for which Si = 0. Treatment Ti is assigned using complete randomization among the n

experimental sample units.

We consider the two outcomes models: linear and non-linear outcome models.

Case 1: Linear Outcome Model Our first outcome model is linear in the pre-treatment

covariates. In this model, we expect the outcome-based OLS estimator to perform well. We

start by drawing coefficients βββ = (β0, β1, . . . , β10) where each element is independently drawn

from the standard normal distribution.

We define the potential outcomes with the following system of linear equations. For each

unit i,

Yi(1) = Yi(0) + τi

τi = Xi1 + . . .+Xi5 + εi1

Yi(0) = (1,Xi)
>βββ + εi0

where we draw two error terms, εi0 and εi1, from the independent standard normal for each

unit. For each unit, we observe Yi for the experimental sample as:

Yi = TiYi(1) + (1− Ti) · Yi(0).

Case 2: Non-Linear Outcome Model Our second outcome model includes a non-linear

relationship with the pre-treatment covariates, a scenario in which OLS should perform poorly,

but the BART model can account for the non-linearities. The outcome model is based on the

data-generating process considered in Hill (2011a). We start by drawing coefficients β1, . . . , β5

randomly from (0, 0.2, 0.4, 0.6, 0.5), each with equal probability, and β6, . . . , β10 drawn inde-

pendently from the standard normal. Let β0 = 0. Finally, define an offset matrix, W, with 5

columns and n rows with every value equal to 0.5.

We then define the potential outcomes with the following system of non-linear equations.

For each unit i,

Yi(1) = (Xi1, . . . , Xi5)
>βββ[1:5] + εi1

Yi(0) = exp((Xi1, . . . , Xi5)
>βββ[1:5] + W) + (Xi6, . . . , Xi10)

>βββ[6:10] + εi0

where we draw two error terms, εi0 and εi1, from the independent standard normal for each

unit.
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J.1.2 Estimators

We evaluate the three classes of estimators described in Section 5.1. In addition, we present the

SATE estimator, using a difference-in-means within the experimental sample. For weighting-

based estimators, we present the IPW and weighted least squares estimator. For outcome-

based estimators, we use OLS and BART. Finally, for doubly-robust estimators, we use the

augmented IPW estimator based on OLS and BART. For all estimators that incorporate

outcome models, we use (X1, . . . , X5) to estimate outcome models.

We estimate sampling weights with logistic regression. We consider both scenarios in

which the sampling model is either correctly or incorrectly specified. For the correctly specified

sampling model, we use the correct set of variables (X1, . . . , X5). For the misspecified sampling

model case, we use the incorrect set (X1, X2, X3).

J.1.3 Results

Figure A8 presents results for 1000 simulations for each data generating process for the outcome

model and for correct and incorrect sampling weights. Numerical summaries can be found in

Table A2. When the sampling weights are correctly specified (purple), both the IPW and wLS

estimators are consistent for the T-PATE regardless of the true outcome model. However,

when sampling weights are misspecified (green), both weighting-based estimators exhibit a

significant bias.

The performance of the outcome-based estimators depends on the underlying outcome

model. The outcome-based estimator based on OLS consistently estimates the T-PATE when

the true outcome model is linear. However, it exhibits significant bias when the true outcome

model is non-linear. The outcome-based estimator based on BART performs well when the

true outcome model is both linear and non-linear, although there is a small amount of residual

finite sample bias in both cases.

Finally, the doubly robust estimators consistently estimate the T-PATE for both linear

and non-linear outcomes when the sampling weights are correctly specified. For example, even

though the outcome-based estimator based on OLS performs poorly when the true DGP is non-

linear, the augmented IPW estimator with OLS is still consistent as far as the sampling model

is correctly specified (“AIPW with OLS” in “Non-linear Outcome” with correct sampling

weights; the first purple box plot in the fourth column in the bottom panel). This shows the

benefit of the doubly robust estimators, which allow for consistent estimation even if one of

the models (outcome or sampling) is misspecified. Even if the sampling weights are incorrect,

the doubly robust estimators perform well, if the outcome model is correctly specified. For

example, the AIPW with OLS is consistent as far as the true outcome model is linear, even

when sampling weights are incorrectly specified (“AIPW with OLS” in “Linear Outcome”

with wrong sampling weights; the first green box plot in the fourth column in the top panel).

Similarly, the AIPW with BART is consistent if the outcome model is correctly specified

(non-linear), or the sampling weights are correctly specified.
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Figure A8: Full Simulation Results. The top panel presents results when the true outcome

model is linear; the bottom panel presents results when the true outcome model is non-linear.

Results for the correct sampling model are presented in purple, and those for the incorrectly

specified sampling model are presented in green. In each figure, the true T-PATE is denoted

by the horizontal dashed line. Rows in each panel denotes sample size of the experimental

data, n = {500, 1000, 4000}.
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Table A2: Numeric Values for Simulations in Figure A8.

Linear Outcome Non-Linear Outcome

Estimator n Bias SE MSE Avg. Interval Length Bias SE MSE Avg. Interval Length

Correct Sampling Model

500 2.835 0.289 8.119 1.134 -1.265 0.206 1.644 0.802

1000 2.831 0.207 8.058 0.801 -1.275 0.152 1.650 0.572Diff-in-Means

4000 2.823 0.103 7.980 0.401 -1.275 0.075 1.631 0.287

500 0.200 0.952 0.945 3.100 -0.014 0.378 0.143 1.229

1000 0.098 0.780 0.618 2.538 -0.014 0.290 0.084 0.974IPW

4000 0.055 0.461 0.216 1.543 -0.007 0.180 0.033 0.595

500 0.495 0.368 0.381 1.343 -0.037 0.220 0.050 0.810

1000 0.355 0.293 0.212 1.086 -0.024 0.176 0.032 0.632wLS

4000 0.156 0.193 0.061 0.709 -0.010 0.110 0.012 0.385

500 0.008 0.246 0.060 0.948 1.060 0.321 1.227 1.129

1000 0.016 0.179 0.032 0.665 1.076 0.238 1.215 0.831OLS

4000 0.001 0.088 0.008 0.331 1.072 0.119 1.163 0.437

500 0.886 0.265 0.855 1.089 0.211 0.197 0.083 0.792

1000 0.568 0.193 0.359 0.780 0.213 0.138 0.064 0.568BART

4000 0.239 0.095 0.066 0.399 0.154 0.068 0.028 0.292

500 0.009 0.391 0.153 1.343 0.212 0.463 0.259 1.498

1000 0.014 0.309 0.096 1.036 0.144 0.425 0.202 1.228AIPW with OLS

4000 -0.002 0.174 0.030 0.614 0.052 0.244 0.062 0.813

500 0.335 0.398 0.270 1.802 0.098 0.258 0.076 1.282

1000 0.173 0.306 0.123 1.375 0.068 0.207 0.048 0.982AIPW with BART

4000 0.036 0.173 0.031 0.742 0.022 0.119 0.015 0.535

Incorrect Sampling Model

500 2.835 0.289 8.119 1.134 -1.265 0.206 1.644 0.802

1000 2.831 0.207 8.058 0.801 -1.275 0.152 1.650 0.572Diff-in-Means

4000 2.823 0.103 7.980 0.401 -1.275 0.075 1.631 0.287

500 1.576 0.511 2.746 1.971 -0.527 0.254 0.343 0.950

1000 1.581 0.383 2.646 1.425 -0.525 0.183 0.309 0.686IPW

4000 1.552 0.192 2.445 0.740 -0.521 0.095 0.281 0.355

500 1.665 0.238 2.830 0.932 -0.538 0.170 0.319 0.661

1000 1.626 0.180 2.677 0.691 -0.532 0.129 0.300 0.486wLS

4000 1.571 0.094 2.478 0.373 -0.522 0.070 0.278 0.258

500 0.008 0.246 0.060 0.948 1.060 0.321 1.227 1.129

1000 0.016 0.179 0.032 0.665 1.076 0.238 1.215 0.831OLS

4000 0.001 0.088 0.008 0.331 1.072 0.119 1.163 0.437

500 0.886 0.264 0.854 1.091 0.214 0.197 0.085 0.786

1000 0.567 0.193 0.359 0.784 0.215 0.138 0.065 0.569BART

4000 0.239 0.096 0.066 0.399 0.154 0.067 0.028 0.294

500 0.015 0.272 0.074 1.046 0.866 0.317 0.850 1.158

1000 0.017 0.198 0.039 0.745 0.869 0.239 0.812 0.859AIPW with OLS

4000 0.003 0.099 0.010 0.379 0.855 0.120 0.746 0.453

500 0.631 0.282 0.478 1.248 0.223 0.211 0.094 0.904

1000 0.387 0.206 0.193 0.879 0.193 0.147 0.059 0.643AIPW with BART

4000 0.153 0.103 0.034 0.441 0.121 0.072 0.020 0.323
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J.2 Naturalistic Simulations

While the analyses in Section J.1 clarify conditions under which the three classes of estimators

are consistent for the T-PATE, we now turn to more naturalistic simulations to better evaluate

their performance in social science data. We build our simulations on the Broockman and Kalla

(2016) experimental sample and the CCES data for Florida.

J.2.1 Data Generating Process

As with our full simulations above, we consider two scenarios for the outcome model, a linear

and non-linear case. For each unit i, we define a vector of covariates, Xi, using gender, race, age

(in years), ideology, party identification, and religiosity. We use these pre-treatment covariates

in the estimation of the treatment effect heterogeneity model and sampling model.

Case 1: Linear Outcome Model For our linear outcome model case, we use OLS to

estimate treatment effect heterogeneity in the experimental sample of Broockman and Kalla

(2016). In particular, we construct our linear outcome model by the following steps:

1. Estimate treatment effect heterogeneity within the experimental data using OLS sepa-

rately for the treated and control group using the experimental data from Broockman

and Kalla (2016).

2. Use the predictions from the estimated model defined in the first step to construct the

potential outcome under control Yi(0) and the individual level treatment effect τi on the

target population defined by the CCES.

3. Rescale τi to have mean 1 in the target population data.

4. Construct Yi(1) = Yi(0) + τi.

5. Re-estimate treatment effect heterogeneity within the experimental data using OLS on

the adjusted Yi(0) and Yi(1) from above and, construct Yi(1) and Yi(0) from the re-

estimated model.

Case 2: Non-Linear Outcome Model For the non-linear outcome model, we use BART

to flexibly estimate treatment effect heterogeneity within the experiment. We construct our

non-linear outcome model by the following steps.

1. Estimate treatment effect heterogeneity within the experimental data from Broockman

and Kalla (2016) using bartc function, from the bartCause package, with default pa-

rameters.

2. Use the predictions from the estimated model defined in the first step to construct the

potential outcome under control Yi(0) and the individual level treatment effect τi on the

target population defined by the CCES.

3. Rescale τi to have mean 1 in the target population data.
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4. Construct Yi(1) = Yi(0) + τi.

5. Re-estimate treatment effect heterogeneity within the experimental data using BART

on the adjusted Yi(0) and Yi(1) from above and, construct Yi(1) and Yi(0) from the

re-estimated model.

As discussed in the original manuscript, there is limited treatment effect heterogeneity

within the original experimental data. In order to induce bias in our experimental sample,

we want to make sure there is a strong correlation between the sampling probability πi and

the estimated individual level treatment effect. To do this, rather than model the difference

between the true experimental sample and the CCES, we construct a pseudo-experimental

sample based on the treatment effect size. The probability of being included in this sample

depends on the outcome model.

For the true linear outcome model, we take one draw from the CCES to construct an

experimental sample where units are included with probability 0.035 if they are in the bottom

75% of treatment effects and 0.01 if they are in the top 25%. Si denotes inclusion in this

sample. We then model the sampling probability πi using logit of the indicator Si on Xi.

This sampling probability is used to draw an experimental sample from the CCES within each

simulation.

BART estimates much less treatment effect heterogeneity than OLS. In order to scale the

bias of the SATE to be similar across the two models, we update the probabilities we use when

constructing Si. Units are included with probability 0.05 if they are in the bottom 95% of

treatment effects and 0.95 if they are in the top 5%. Si denotes inclusion in this sample. We

then construct πi using logit of the indicator Si on Xi.

Finally, within each simulation, we draw a random sample of size 5000 from the CCES data

that serves as our target population. As the experimental data, we draw a fixed sample of size

n = {500, 1000, 4000} using πi defined as above. Within each simulation, potential outcomes

are constructed using Yi(1) and Yi(0) as defined above for each outcome model, plus random

noise. Treatment Ti is assigned using complete randomization among the n experimental

sample units.

J.2.2 Estimators

We evaluate the three classes of estimators described in Section 5.1. In addition, we present the

SATE estimator, using a difference-in-means within the experimental sample. For weighting-

based estimators, we present the IPW and weighted least squares estimator. For outcome-

based estimators, we use OLS and BART. Finally, for doubly-robust estimators, we use the

augmented IPW estimator based on OLS and BART. For all estimators that incorporate

outcome models, we use Xi to estimate outcome models.

We estimate sampling weights with logistic regression. We consider both scenarios in which

the sampling model is either correctly or incorrectly specified. For the correctly specified sam-

pling model, we use the correct set of variables–all variables in Xi. For the misspecified sam-
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pling model case, we only use religiosity and party identification to estimate logistic regression

and construct sampling weights.
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Figure A9: Naturalistic Simulation Results. In the top panel, we report results when the true

outcome model is linear; in the bottom panel, we present results when the true outcome model

is non-linear. Purple represents results when the sampling weights are correctly specified, and

green represents results when the sampling weights are incorrectly specified. In each figure,

the true T-PATE is denoted by the horizontal dashed line. In each panel, rows indicate the

experimental sample sizes n = {500, 1000, 4000}.
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J.2.3 Results

Figure A9 presents results for 1000 simulations from the linear and non-linear outcome model

data-generating processes. Numerical summaries can be found in Table A3. In this naturalistic

simulation, we confirm the same pattern we show theoretically and in the previous full sim-

ulation. Weighting-based estimators (the second column in both panels) are consistent when

sampling weights are correctly specified (purple), but they are not consistent when weights

are misspecified (green).

In this naturalistic simulation, because there is limited treatment effect heterogeneity with

respect to X, the outcome-based estimator with OLS performs well even when the outcome is

non-linear, implying the treatment effect heterogeneity induced by BART is well approximated

by a fully-interacted linear model (“OLS” estimator in the third column of both panels). As

with the full simulations, we see some finite sample bias, decreasing with sample size, using

the BART estimator in both linear and non-linear outcome data generating processes.

Results confirm that the doubly robust estimators are consistent even when one of the two

models — outcome and sampling models — is misspecified.
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Table A3: Numeric Values for Simulations in Figure A9.

Linear Outcome Non-Linear Outcome

Estimator n Bias SE MSE Avg. Interval Length Bias SE MSE Avg. Interval Length

Correct Sampling Model

500 -0.388 0.236 0.206 0.931 -0.266 0.216 0.117 0.862

1000 -0.395 0.173 0.186 0.656 -0.272 0.159 0.099 0.609Diff-in-Means

4000 -0.394 0.084 0.163 0.328 -0.273 0.078 0.081 0.305

500 -0.004 0.247 0.061 1.004 -0.024 0.352 0.125 1.307

1000 0.000 0.175 0.031 0.702 -0.029 0.242 0.059 0.942IPW

4000 -0.001 0.088 0.008 0.348 -0.021 0.125 0.016 0.486

500 -0.036 0.235 0.057 0.953 -0.061 0.313 0.101 1.180

1000 -0.018 0.162 0.026 0.663 -0.043 0.227 0.053 0.868wLS

4000 -0.006 0.082 0.007 0.327 -0.026 0.119 0.015 0.463

500 0.000 0.235 0.055 0.927 0.004 0.331 0.110 1.292

1000 0.001 0.162 0.026 0.637 -0.006 0.224 0.050 0.885OLS

4000 -0.001 0.081 0.007 0.312 0.000 0.109 0.012 0.434

500 -0.243 0.229 0.111 0.922 -0.231 0.218 0.101 0.990

1000 -0.156 0.172 0.054 0.662 -0.206 0.177 0.074 0.746BART

4000 -0.043 0.083 0.009 0.371 -0.115 0.114 0.026 0.465

500 0.000 0.235 0.055 0.929 0.005 0.356 0.127 1.367

1000 0.001 0.162 0.026 0.638 -0.001 0.243 0.059 0.958AIPW with OLS

4000 -0.001 0.081 0.007 0.313 -0.004 0.123 0.015 0.482

500 -0.013 0.231 0.054 0.977 -0.038 0.326 0.108 1.379

1000 -0.011 0.172 0.030 0.677 -0.032 0.235 0.056 0.974AIPW with BART

4000 -0.009 0.084 0.007 0.369 -0.011 0.128 0.016 0.518

Incorrect Sampling Model

500 -0.379 0.270 0.217 0.379 -0.269 0.251 0.135 0.351

1000 -0.404 0.196 0.202 0.277 -0.285 0.182 0.115 0.257Diff-in-Means

4000 -0.396 0.098 0.167 0.138 -0.283 0.090 0.088 0.130

500 -0.196 0.281 0.118 0.395 -0.179 0.321 0.135 0.431

1000 -0.222 0.202 0.090 0.287 -0.187 0.227 0.086 0.309IPW

4000 -0.214 0.100 0.056 0.143 -0.178 0.112 0.044 0.159

500 -0.213 0.271 0.119 0.383 -0.183 0.313 0.132 0.408

1000 -0.226 0.193 0.088 0.273 -0.194 0.220 0.086 0.303wLS

4000 -0.215 0.094 0.055 0.135 -0.179 0.110 0.044 0.153

500 0.020 0.276 0.076 0.387 0.003 0.389 0.151 0.531

1000 -0.004 0.194 0.038 0.267 -0.011 0.266 0.071 0.373OLS

4000 -0.001 0.095 0.009 0.133 0.001 0.130 0.017 0.183

500 -0.238 0.240 0.114 0.674 -0.236 0.227 0.107 0.714

1000 -0.154 0.179 0.056 0.477 -0.208 0.182 0.076 0.540BART

4000 -0.043 0.087 0.009 0.259 -0.116 0.116 0.027 0.332

500 0.020 0.276 0.077 0.387 0.004 0.392 0.154 0.541

1000 -0.004 0.194 0.038 0.267 -0.011 0.272 0.074 0.377AIPW with OLS

4000 -0.001 0.095 0.009 0.133 0.002 0.133 0.018 0.186

500 -0.063 0.242 0.062 0.755 -0.070 0.286 0.087 0.918

1000 -0.056 0.176 0.034 0.476 -0.088 0.211 0.052 0.618AIPW with BART

4000 -0.037 0.086 0.009 0.244 -0.069 0.123 0.020 0.340
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K Literature Review of American Political Science Review

To evaluate current practice for addressing concerns about external validity, we conducted

a review of the five most recent years of all articles that use randomized experiments and

common observational causal designs that are published in the American Political Science

Review (APSR).

To conduct our review for experiments, using the advanced search on the APSR website,

we searched for all articles that mention “experiment” in the years 2015-2019 (inclusive). We

read each article to determine if the author(s) used a randomized experiment. This resulted

in 35 articles, outlined in Table A4. We then coded each article for the type of experiment,

and found 18 field, 3 lab, and 14 survey experiments.

For observational studies, we review papers that use instumental variables, the regression

discontinuity design, or the difference-in-differences design. To find papers using instrumental

variables, we searched for all articles that mention “instumental variable”. To find papers

using the regression discontinuity design, we searched for all articles that mention “regression

discontinuity”. To find papers using difference-in-differences, we searched for all articles that

mention “difference-in-difference” and “two-way fixed effect.” We read each article to deter-

mine if the author(s) used an appropriate observational causal design. This resulted in 20

articles which use instrumental variables, 16 which use regression discontinuity designs and 10

that use differences-in-differences (we focus on papers that uses the basic DID design and the

staggered adoption design). These references are outlined in Table A4.

With regards to external validity, we reviewed two dimensions: (1) formal analysis of

external validity and (2) use of purposive variations. There were 4 experimental articles

(11%) that conducted some formal analysis in the main text to address external validity.

All of these papers were survey experiments and used survey weights to adjust for sample

representativeness for X-validity. As for observational studies, there were 6 papers out of 46

papers (13%) conducted some formal analysis in the main text to address external validity. In

particular, there was 1 instrumental variables article (5%), 3 regression discontinuity design

articles (19%), and 2 difference-in-differences articles (10%). Most of these involved running

the analysis on a larger data set that included more contextual variation. While we found very

few formal analyses, we do note that most authors, across methods, do informally discuss the

implications of their findings for external validity.

There were 29 experimental articles (83%) that included some purposive variations in one

of four dimensions of external validity. There were 41 observational studies that included

some purposive variations (89%). In particular, there were 16 instrumental variables arti-

cles (80%). 15 regression discontinuity design articles (94%), and 10 differences-in-differences

articles (100%).
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Table A4: Randomized experiments and observational studies in the APSR from 2015-2019.

Authors Year Title

Experiments

Allison P. Anoll 2018 What Makes a Good Neighbor? Race, Place,

and Norms of Political Participation

Eric Arias and Pablo Balán

and Horacio Larreguy and

John Marshall and Pablo

Querubin

2019 Information Provision, Voter Coordination,

and Electoral Accountability: Evidence from

Mexican Social Networks

Adam Michael Auerbach and

Tariq Thachil

2018 How Clients Select Brokers: Competition and

Choice in India’s Slums

Alexandra Avdeenko and

Michael J. Gilligan

2015 International Interventions to Build Social

Capital: Evidence from a Field Experiment

in Sudan

Andy Baker 2015 Race, Paternalism, and Foreign Aid: Evi-

dence from U.S. Public Opinion

Robert A. Blair and Sabrina

M. Karim and Benjamin S.

Morse

2019 Establishing the Rule of Law in Weak and

War-torn States: Evidence from a Field Ex-

periment with the Liberian National Police

Christopher Blattman and

Jeannie Annan

2016 Can Employment Reduce Lawlessness and

Rebellion? A Field Experiment with High-

Risk Men in a Fragile State

Pazit ben-nun Bloom and

Gizem Arikan and Marie

Courtemanche

2015 Religious Social Identity, Religious Belief, and

Anti-Immigration Sentiment

Céline Braconnier and Jean-

yves Dormagen and Vincent

Pons

2017 Voter Registration Costs and Disenfranchise-

ment: Experimental Evidence from France

Daniel M. Butler and Hans

J.g. Hassell

2018 On the Limits of Officials’ Ability to Change

Citizens’ Priorities: A Field Experiment in

Local Politics

Taylor N. Carlson 2019 Through the Grapevine: Informational Con-

sequences of Interpersonal Political Commu-

nication

Nicholas Carnes and Noam

Lupu

2016 Do Voters Dislike Working-Class Candidates?

Voter Biases and the Descriptive Underrepre-

sentation of the Working Class
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Table A4: Randomized experiments and observational studies in the APSR from 2015-2019.

Authors Year Title

James D. Fearon and Macar-

tan Humphreys and Jeremy

M. Weinstein

2015 How Does Development Assistance Affect

Collective Action Capacity? Results from a

Field Experiment in Post-Conflict Liberia

Jens Grosser and Thomas R.

Palfrey

2019 Candidate Entry and Political Polarization:

An Experimental Study

Guy Grossman and Kristin

Michelitch

2018 Information Dissemination, Competitive

Pressure, and Politician Performance be-

tween Elections: A Field Experiment in

Uganda

Hahrie Han 2016 The Organizational Roots of Political Ac-

tivism: Field Experiments on Creating a Re-

lational Context

Andrew Healy and Katrina

Kosec and Cecilia Hyunjung

Mo

2017 Economic Development, Mobility, and Politi-

cal Discontent: An Experimental Test of Toc-

queville’s Thesis in Pakistan

Alexander Hertel-fernandez

and Matto Mildenberger and

Leah C. Stokes

2019 Legislative Staff and Representation in

Congress

John B. Holbein 2017 Childhood Skill Development and Adult Po-

litical Participation

Leonie Huddy and Lilliana

Mason and Lene Aaroe

2015 Expressive Partisanship: Campaign Involve-

ment, Political Emotion, and Partisan Iden-

tity

Joshua L. Kalla and David E.

Broockman

2018 The Minimal Persuasive Effects of Campaign

Contact in General Elections: Evidence from

49 Field Experiments

Amy E. Lerman and Meredith

L. Sadin and Samuel Tracht-

man

2017 Policy Uptake as Political Behavior: Evidence

from the Affordable Care Act

Zhao Li 2018 How Internal Constraints Shape Interest

Group Activities: Evidence from Access-

Seeking PACs

Edmund Malesky and Markus

Taussig

2019 Participation, Government Legitimacy,

and Regulatory Compliance in Emerging

Economies: A Firm-Level Field Experiment

in Vietnam
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Table A4: Randomized experiments and observational studies in the APSR from 2015-2019.

Authors Year Title

Neil Malhotra and Benôıt

Monin and Michael Tomz

2019 Does Private Regulation Preempt Public Reg-

ulation?

Kristin Michelitch 2015 Does Electoral Competition Exacerbate In-

terethnic or Interpartisan Economic Discrimi-

nation? Evidence from a Field Experiment in

Market Price Bargaining

Alexandra Scacco and Shana

S. Warren

2018 Can Social Contact Reduce Prejudice and

Discrimination? Evidence from a Field Ex-

periment in Nigeria

Gabor Simonovits and Gabor

Kezdi and Peter Kardos

2018 Seeing the World Through the Other’s Eye:

An Online Intervention Reducing Ethnic Prej-

udice

Dawn Langan Teele and

Joshua Kalla and Frances

Rosenbluth

2018 The Ties That Double Bind: Social Roles and

Women’s Underrepresentation in Politics

Ali A. Valenzuela and Melissa

R. Michelson

2016 Turnout, Status, and Identity: Mobilizing

Latinos to Vote with Group Appeals

Dalston G. Ward 2019 Public Attitudes toward Young Immigrant

Men

Ariel R. White and Noah L.

Nathan and Julie K. Faller

2015 What Do I Need to Vote? Bureaucratic Dis-

cretion and Discrimination by Local Election

Officials

Jonathan Woon 2018 Primaries and Candidate Polarization: Be-

havioral Theory and Experimental Evidence

Lauren E. Young 2019 The Psychology of State Repression: Fear and

Dissent Decisions in Zimbabwe

Adam Zelizer 2019 Is Position-Taking Contagious? Evidence of

Cue-Taking from Two Field Experiments in a

State Legislature

Regression-Discontinuity-Designs

Jo Dahlgaard 2018 Trickle-Up Political Socialization: The Causal

Effect on Turnout of Parenting a Newly En-

franchised Voter.
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Table A4: Randomized experiments and observational studies in the APSR from 2015-2019.

Authors Year Title

Jon H. Fiva and Daniel M.

Smith

2018 Political Dynasties and the Incumbency Ad-

vantage in Party-Centered Environments.

Olle Folke and Torsten Pers-

son and Johanna Rickne

2016 The Primary Effect: Preference Votes and Po-

litical Promotions.

Jacob M. Grumbach and

Alexander Sahn

2020 Race and Representation in Campaign Fi-

nance.

Saad Gulzar and Benjamin J.

Pasquale

2017 Politicians, Bureaucrats, and Development:

Evidence from India.

Jens Hainmueller and Do-

minik Hangartner and

Giuseppe Pietrantuono

2017 Catalyst or Crown: Does Naturalization Pro-

mote the Long-Term Social Integration of Im-

migrants?

Andrew B. Hall and Daniel M.

Thompson

2018 Who Punishes Extremist Nominees? Candi-

date Ideology and Turning Out the Base in

US Elections.

Andrew B. Hall 2015 What Happens When Extremists Win Pri-

maries?

John Holbein 2016 Left Behind? Citizen Responsiveness to Gov-

ernment Performance Information.

Instrumental Variables

Robert Braun 2016 Religious Minorities and Resistance to Geno-

cide: The Collective Rescue of Jews in the

Netherlands during the Holocaust.

Lars-Erik Cederman and Si-

mon Hug and andreas Schädel

and Julian Wucherpfennig

2015 Territorial Autonomy in the Shadow of Con-

flict: Too Little, Too Late?

Italo Colantone and Piero

Stanig

2018 Global Competition and Brexit.

Kevin Croke and Guy Gross-

man and Horacio A. Larreguy

and John Marshall

2016 Deliberate Disengagement: How Education

Can Decrease Political Participation in Elec-

toral Authoritarian Regimes.

Aditya Dasgupta 2018 Technological Change and Political Turnover:

The Democratizing Effects of the Green Rev-

olution in India.

Michael T. Dorsch and Paul

Maarek

2019 Democratization and the Conditional Dynam-

ics of Income Distribution.
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Table A4: Randomized experiments and observational studies in the APSR from 2015-2019.

Authors Year Title

Paul Castañeda Dower and

Evgeny Finkel and Scott

Gehlbach and Steven Nafziger

2018 Collective Action and Representation in Au-

tocracies: Evidence from Russia’s Great Re-

forms.

David Doyle 2015 Remittances and Social Spending.

Anselm Hager and Krzysztof

Krakowski and Max Schaub

2019 Ethnic Riots and Prosocial Behavior: Evi-

dence from Kyrgyzstan.

Jens Hainmueller and Do-

minik Hangartner and

Giuseppe Pietrantuono

2017 Catalyst or Crown: Does Naturalization Pro-

mote the Long-Term Social Integration of Im-

migrants?

Dominik Hangartner and Elias

Dinas and Moritz Marbach

and Konstantinos Matakos

and Dimitrios Xefteris

2019 Does Exposure to the Refugee Crisis Make

Natives More Hostile?

Ari Hyytinen and Jaakko

Meriläinen and Tuukka Saari-

maa and Otto Toivanen and

Janne Tukiainen

2018 Public Employees as Politicians: Evidence

from Close Elections.

Sacha Kapoor and Arvind

Magesan

2018 Independent Candidates and Political Repre-

sentation in India.

David D. Laitin and Rajesh

Ramachandran

2016 Language Policy and Human Development.

Gareth Nellis and Niloufer

Siddiqui

2018 Secular Party Rule and Religious Violence in

Pakistan.

Emily Hencken Ritter and

Courtenay R. Conrad

2016 Preventing and Responding to Dissent:

The Observational Challenges of Explaining

Strategic Repression.

Ariel White 2019 Misdemeanor Disenfranchisement? The De-

mobilizing Effects of Brief Jail Spells on Po-

tential Voters.

Lucas Leemann and Fabio

Wasserfallen

2016 The Democratic Effect of Direct Democracy.

Karl-Oskar Lindgren and Sven

Oskarsson and Mikael Persson

2019 Enhancing Electoral Equality: Can Educa-

tion Compensate for Family Background Dif-

ferences in Voting Participation?

Arturas Rozenas and Yuri M.

Zhukov

2019 Mass Repression and Political Loyalty: Evi-

dence from Stalin’s ‘Terror by Hunger’.
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Table A4: Randomized experiments and observational studies in the APSR from 2015-2019.

Authors Year Title

Differences-in-differences

Diana Z. O’Brien and Johanna

Rickne

2016 Gender Quotas and Women’s Political Lead-

ership

Francisco Garfias 2018 Elite Competition and State Capacity Devel-

opment: Theory and Evidence from Post-

Revolutionary Mexico

Gregory J. Martin and Joshua

Mccrain

2019 Local News and National Politics

Jens Blom-Hansen and Kurt

Houlberg and Søren Serritzlew

and Daniel Treisman

2016 Jurisdiction Size and Local Government Pol-

icy Expenditure: Assessing the Effect of Mu-

nicipal Amalgamation

Joshua D. Clinton and Michael

W. Sances

2018 The Politics of Policy: The Initial Mass Po-

litical Effects of Medicaid Expansion in the

States

Martin Vinæs Larsen and

Frederik Hjorth and Peter

Thisted Dinesen and Kim

Mannemar Sønderskov

2019 When Do Citizens Respond Politically to the

Local Economy? Evidence from Registry

Data on Local Housing Markets

Michael Becher and Irene

Menéndez González

2019 Electoral Reform and Trade-Offs in Represen-

tation

Peter Selb and Simon Munzert 2018 Examining a Most Likely Case for Strong

Campaign Effects

Ryan D. Enos and Aaron R.

Kaufman and Melissa L. Sands

2019 Can Violent Protest Change Local Policy

Support?

Vasiliki Fouka 2019 How Do Immigrants Respond to Discrimina-

tion?

L Numeric Results and Model Specification

In this section we provide numerical results for all figures containing analytical results in the

main manuscript and appendices. Where appropriate, we also provide the associated model

specification. For ease of reference, we include a brief description of the analysis and results

and the associated figure reference.

L.1 Results for Broockman and Kalla (2016) analysis in Figure 7

Figure 7 presents point estimates and their 95% confidence intervals using different T-PATE es-

timators. The codebook and original authors’ replication files can be found at https://doi.org/10.7910/DVN/WKR39N.

The associated models used in our analyses are described below.
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• SATE: Following the original authors, we estimate the SATE for the trans-tolerance

index at time t with regression controls pre-specified in the authors’ pre-analysis plan

and replication code as:

transtoleranceti ∼ Ti + miami trans law t0 + miami trans law2 t0 + therm trans t0

+ gender norms sexchange t0 + gender norms moral t0

+ gender norms abnormal t0 + ssm t0 + therm obama t0

+ therm gay t0 + vf democrat + ideology t0

+ religious t0 + exposure gay t0 + exposure trans t0

+ pid t0 + sdo scale + gender norm daugher t0

+ gender norm looks t0 + gender norm rights t0 + therm afams t0

+ vf female + vf hispanic + vf black + vf age

+ survey language es + cluster level t0 scale mean

where Ti is the treatment indicator. All linear regressions are estimated using lm robust

(Blair et al., 2019), with bootstrapped standard errors.

• IPW: Our IPW estimator uses calibration weights in which we calibrate on the following

variables:

X = [vf female, vf black, vf white, religious t0,pid t0, vf age bucket]

Let Px be defined as the vector of population means for each variable (with categorical

variables coded as indicators for each level).

We construct calibration (or balancing) weights such that

min
w

∑
wilog(wi)

subject to
∑

wiXi = Px,∑
wi = 1, and 0 ≤ wi ≤ 1.

See Deville and Särndal (1992), Hainmueller (2012), or Hartman et al. (2015) for more de-

tails about calibration weighting. We then conduct weighted least squares of transtoleranceti ∼
Ti, with bootstrapped standard errors. The model is implemented using our associated

package with the function tpate with settings est type = "ipw" and weights type =

"calibration". The underlying calibration code relies on the calibrate function in

the survey package (Lumley, 2020) with default settings. See Section 5.1.1.

• wLS: The weighted least squares analysis builds on the IPW model, running the same

regression additionally with the inclusion of the regression controls included in the SATE
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estimator, which were pre-specified by the original authors. We calculate bootstrapped

standard errors. The model is implemented using our associated package with the func-

tion tpate with settings est type = "wls" and weights type = "calibration". See

Section 5.1.1.

• OLS: The OLS outcome-based estimator estimates uses the following specification sep-

arately for the treated and control groups:

transtoleranceti ∼ vf age + vf female + vf black

+ vf white + religious t0 + ideology t0 + pid t0

The resulting coefficients are used to project and calculate as the average predicted out-

come under treatment and control (respectively) using the covariate distribution of the

population. The effect is estimated as the average difference in these average predicted

outcomes. We use bootstrapped standard errors. The model is implemented using our

associated package with the function tpate with settings est type = "outcome-ols".

See Section 5.1.2.

• BART: For the BART outcome-based estimator, we estimate the model:

Y = f(t, x) + ε ε ∼ N(0, σ2)

where t is the treatment indicator and the x are the regression controls included in the

OLS outcome-based estimator.

The model is implemented using our associated package with the function tpate with set-

tings est type = "outcome-bart". The underlying code calls bartc in the bartCause

package (Hill, 2011b) with default settings. Credible intervals are calculated over the

posterior. See Section 5.1.2.

• AIPW with OLS: The augmented OLS estimator uses the regression specification out-

lined under “OLS” and the calibration weights described in “IPW”. We use bootstrapped

standard errors. The model is implemented using our associated package with the func-

tion tpate with settings est type = "dr-ols" and weights type = "calibration".

See Section 5.1.3.

• AIPW with BART: The augmented BART estimator uses the specification outlined un-

der “BART” and the calibration weights described in “IPW”. Credible intervals are

calculated over the posterior. The model is implemented using our associated pack-

age with the function tpate with settings est type = "dr-bart" and weights type =

"calibration". See Section 5.1.3.

The numeric results for Figure 7 are presented in Table A5 below.
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Table A5: Numeric Values for T-PATE Estimates for Broockman and Kalla (2016).

Estimator Estimate SE 95% CI

Measurement at +3 Days

OLS 0.218 0.055 [0.112, 0.329]

IPW 0.335 0.191 [-0.062, 0.683]

wLS 0.252 0.080 [0.099, 0.416]

OLS 0.238 0.151 [-0.054, 0.519]

BART 0.135 0.095 [-0.046, 0.325]

AIPW with OLS 0.337 0.195 [-0.042, 0.706]

AIPW with BART 0.322 0.160 [0.019, 0.635]

Measurement at +3 Weeks

OLS 0.179 0.059 [0.059, 0.289]

IPW 0.441 0.200 [0.037, 0.815]

wLS 0.223 0.062 [0.098, 0.349]

OLS 0.229 0.141 [-0.053, 0.494]

BART 0.114 0.095 [-0.067, 0.305]

AIPW with OLS 0.275 0.175 [-0.081, 0.624]

AIPW with BART 0.317 0.158 [0.005, 0.623]

Measurement at +6 Weeks

OLS 0.263 0.056 [0.146, 0.37]

IPW 0.507 0.210 [0.088, 0.916]

wLS 0.365 0.068 [0.234, 0.498]

OLS 0.253 0.142 [-0.012, 0.515]

BART 0.203 0.095 [0.017, 0.393]

AIPW with OLS 0.328 0.182 [-0.025, 0.683]

AIPW with BART 0.396 0.156 [0.093, 0.693]

Measurement at +3 Months

OLS 0.259 0.061 [0.133, 0.374]

IPW 0.527 0.202 [0.114, 0.928]

wLS 0.300 0.063 [0.177, 0.419]

OLS 0.204 0.145 [-0.094, 0.487]

BART 0.131 0.097 [-0.062, 0.319]

AIPW with OLS 0.265 0.182 [-0.089, 0.621]

AIPW with BART 0.300 0.172 [-0.036, 0.637]
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L.2 Results for Bisgaard (2019) analysis in Figure 8

For the external validity analysis of Bisgaard (2019), we test each hypothesis by considering C-

and Y -validity together using a sign-generalization test. Replicating the results from the orig-

inal author, for each k outcome (Yk) and context (c) pair, we estimate the effect of treatment

(Ti) running the following regression separately within each context:

Ykc ∼ Tic

where all regressions are estimated using robust standard errors. The resulting p-values, pre-

sented in Table A6 are used in the partial conjunction test.
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Table A6: Numeric Values for Sign-Generalization Test for Bisgaard (2019).

Threshold Outcome Variation Context Variation P-value

(H1) Incumbent Supporters

1 Argument Rating United States 0.000

2 Argument Rating United States 0.000

3 Open-Ended United States 0.000

4 Argument Rating United States 0.000

5 Close-Ended United States 0.000

6 Argument Rating United States 0.000

7 Argument Rating United States 0.000

8 Open-Ended Denmark 0.003

9 Close-Ended Denmark 0.152

10 Close-Ended Denmark 0.248

11 Argument Rating United States 0.251

12 Open-Ended Denmark 0.251

(H2) Opposition Supporters

1 Argument Rating United States 0.000

2 Open-Ended United States 0.000

3 Argument Rating United States 0.000

4 Argument Rating United States 0.000

5 Close-Ended United States 0.000

6 Argument Rating United States 0.000

7 Argument Rating United States 0.000

8 Argument Rating United States 0.000

9 Open-Ended Denmark 0.000

10 Close-Ended Denmark 0.000

11 Open-Ended Denmark 0.000

12 Close-Ended Denmark 0.221
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L.3 Results for Broockman and Kalla (2016) analysis in Figure A1

In Figure A1 we conduct the T-PATE analysis separately by canvasser identity to evaluate

T -validity. The estimators are the same as those used for Figure 7, described in Section L.1,

conducted separately by whether the randomly assigned canvasser self identifies as transgender.

The resulting point estimates and intervals are presented in Table A7.

Table A7: Numeric Values for T-PATE Estimates for Broockman and Kalla (2016) by Can-

vasser Identity in Figure A1.

Time Period Estimator Estimate SE 95% CI

All

+3 Days SATE 0.218 0.055 [0.112, 0.329]

+3 Days T-PATE: Weighting-based Estimator 0.252 0.080 [0.099, 0.416]

+3 Weeks SATE 0.179 0.059 [0.059, 0.289]

+3 Weeks T-PATE: Weighting-based Estimator 0.223 0.062 [0.098, 0.349]

+6 Weeks SATE 0.263 0.056 [0.146, 0.37]

+6 Weeks T-PATE: Weighting-based Estimator 0.365 0.068 [0.234, 0.498]

+3 Months SATE 0.259 0.061 [0.133, 0.374]

+3 Months T-PATE: Weighting-based Estimator 0.300 0.063 [0.177, 0.419]

Non-Transgender Canvasser

+3 Days SATE 0.140 0.070 [0.005, 0.283]

+3 Days T-PATE: Weighting-based Estimator 0.148 0.096 [-0.039, 0.34]

+3 Weeks SATE 0.140 0.073 [0.001, 0.292]

+3 Weeks T-PATE: Weighting-based Estimator 0.206 0.089 [0.027, 0.373]

+6 Weeks SATE 0.235 0.071 [0.09, 0.368]

+6 Weeks T-PATE: Weighting-based Estimator 0.366 0.088 [0.203, 0.542]

+3 Months SATE 0.235 0.079 [0.076, 0.385]

+3 Months T-PATE: Weighting-based Estimator 0.387 0.088 [0.218, 0.556]

Transgender Canvasser

+3 Days SATE 0.370 0.107 [0.152, 0.581]

+3 Days T-PATE: Weighting-based Estimator 0.401 0.143 [0.104, 0.667]

+3 Weeks SATE 0.248 0.110 [0.051, 0.471]

+3 Weeks T-PATE: Weighting-based Estimator 0.276 0.145 [0.009, 0.567]

+6 Weeks SATE 0.303 0.097 [0.116, 0.501]

+6 Weeks T-PATE: Weighting-based Estimator 0.345 0.107 [0.137, 0.543]

+3 Months SATE 0.380 0.125 [0.142, 0.636]

+3 Months T-PATE: Weighting-based Estimator 0.393 0.125 [0.139, 0.615]
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L.4 Results for Bisgaard (2019) analysis in Figure A2

For the external validity analysis for Bisgaard (2019) in Figure A2, we further evaluate contex-

tual variation due to the Denmark ruling coalition changing over time. The p-values are iden-

tical to those in Section L.2, with the Denmark ruling coalition included as a separate value in

“Context”. The original author’s replication code can be found at https://doi.org/10.7910/DVN/FTFJTV.
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Table A8: Numeric Values for Sign-Generalization Test for Bisgaard (2019) in Figure A2.

Threshold Outcome Variation Context Variation P-value

(H1) Incumbent Supporters

1 Argument Rating United States 0.000

2 Argument Rating United States 0.000

3 Open-Ended United States 0.000

4 Argument Rating United States 0.000

5 Close-Ended United States 0.000

6 Argument Rating United States 0.000

7 Argument Rating United States 0.000

8 Open-Ended Denmark (Center-left) 0.003

9 Close-Ended Denmark (Center-right) 0.152

10 Close-Ended Denmark (Center-right) 0.248

11 Argument Rating United States 0.251

12 Open-Ended Denmark (Center-right) 0.251

(H2) Opposition Supporters

1 Argument Rating United States 0.000

2 Open-Ended United States 0.000

3 Argument Rating United States 0.000

4 Argument Rating United States 0.000

5 Close-Ended United States 0.000

6 Argument Rating United States 0.000

7 Argument Rating United States 0.000

8 Argument Rating United States 0.000

9 Open-Ended Denmark (Center-left) 0.000

10 Close-Ended Denmark (Center-right) 0.000

11 Open-Ended Denmark (Center-right) 0.000

12 Close-Ended Denmark (Center-right) 0.221
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L.5 Results for Young (2019) analysis in Figure A3

For the external validity analysis for Young (2019), we test each hypothesis across outcome

and treatment variations. The resulting p-values are combined using a sign-generalization

test. Replicating the results from the original author, for each k outcome (Yk) and treatment

(t) pair, we estimate the effect of treatment (Tt) using the following weighted least squares

regression:

Yk ∼ Tt

where the weights are the inverse probability weights from the block-assignment. Standard

errors are estimated using robust standard errors. The resulting p-values, presented in Ta-

ble A9, are used in the partial conjunction test. The original author’s replication code can be

found at https://doi.org/10.7910/DVN/UNNCTR.

Table A9: Numeric Values for Sign-Generalization Test for Young (2019) in Figure A3.

Hypothesis Threshold Treatment Variation Outcome Variation P-value

(H1) 1 Political Fear Survey (Current) 0.000

(H1) 2 Political Fear Survey (Current) 0.000

(H1) 3 Political Fear Survey (Current) 0.000

(H1) 4 Political Fear Survey (Current) 0.000

(H1) 5 Political Fear Survey (Future) 0.000

(H1) 6 Political Fear Survey (Future) 0.000

(H1) 7 Political Fear Survey (Current) 0.000

(H1) 8 Political Fear Survey (Current) 0.000

(H1) 9 Political Fear Survey (Future) 0.000

(H1) 10 General Fear Survey (Current) 0.000

(H1) 11 Political Fear Survey (Future) 0.000

(H1) 12 General Fear Survey (Current) 0.000

(H1) 13 Political Fear Survey (Future) 0.000

(H1) 14 General Fear Survey (Current) 0.000

(H1) 15 General Fear Survey (Current) 0.000

(H1) 16 Political Fear Survey (Future) 0.000

(H1) 17 General Fear Survey (Current) 0.000

(H1) 18 General Fear Survey (Future) 0.000

(H1) 19 General Fear Survey (Current) 0.000

(H1) 20 General Fear Survey (Future) 0.000

(H1) 21 General Fear Survey (Future) 0.000

(H1) 22 General Fear Survey (Future) 0.000

(H1) 23 General Fear Survey (Future) 0.000

38



Table A9: Numeric Values for Sign-Generalization Test for Young (2019) in Figure A3. (con-

tinued)

Hypothesis Threshold Treatment Variation Outcome Variation P-value

(H1) 24 General Fear Survey (Future) 0.000

(H1) 25 Political Fear Behavioral 0.000

(H1) 26 General Fear Behavioral 0.011

(H2) 1 Political Fear Survey (Current) 0.000

(H2) 2 Political Fear Survey (Current) 0.000

(H2) 3 Political Fear Survey (Current) 0.000

(H2) 4 Political Fear Survey (Future) 0.000

(H2) 5 Political Fear Survey (Future) 0.000

(H2) 6 Political Fear Survey (Current) 0.000

(H2) 7 Political Fear Survey (Future) 0.000

(H2) 8 Political Fear Survey (Future) 0.000

(H2) 9 Political Fear Survey (Current) 0.000

(H2) 10 Political Fear Survey (Current) 0.001

(H2) 11 Political Fear Survey (Future) 0.004

(H2) 12 Political Fear Survey (Future) 0.019

(H2) 13 General Fear Survey (Current) 0.087

(H2) 14 General Fear Survey (Current) 0.101

(H2) 15 General Fear Survey (Current) 0.136

(H2) 16 General Fear Survey (Future) 0.189

(H2) 17 General Fear Survey (Current) 0.189

(H2) 18 General Fear Survey (Current) 0.189

(H2) 19 General Fear Survey (Current) 0.236

(H2) 20 General Fear Survey (Future) 0.236

(H2) 21 General Fear Survey (Future) 0.236

(H2) 22 General Fear Survey (Future) 0.236

(H2) 23 General Fear Survey (Future) 0.282

(H2) 24 General Fear Survey (Future) 0.363

(H3) 1 Political Fear Survey (Future) 0.000

(H3) 2 Political Fear Survey (Future) 0.000

(H3) 3 General Fear Survey (Current) 0.000

(H3) 4 Political Fear Survey (Future) 0.001

(H3) 5 Political Fear Survey (Current) 0.002

(H3) 6 Political Fear Survey (Current) 0.004

(H3) 7 General Fear Survey (Future) 0.005

(H3) 8 General Fear Survey (Future) 0.006
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Table A9: Numeric Values for Sign-Generalization Test for Young (2019) in Figure A3. (con-

tinued)

Hypothesis Threshold Treatment Variation Outcome Variation P-value

(H3) 9 General Fear Survey (Future) 0.010

(H3) 10 Political Fear Survey (Current) 0.010

(H3) 11 Political Fear Survey (Current) 0.010

(H3) 12 General Fear Survey (Current) 0.023

(H3) 13 Political Fear Survey (Future) 0.023

(H3) 14 General Fear Survey (Future) 0.028

(H3) 15 Political Fear Survey (Future) 0.030

(H3) 16 Political Fear Survey (Current) 0.033

(H3) 17 Political Fear Survey (Current) 0.034

(H3) 18 Political Fear Survey (Future) 0.034

(H3) 19 General Fear Survey (Current) 0.118

(H3) 20 General Fear Survey (Current) 0.119

(H3) 21 General Fear Survey (Future) 0.119

(H3) 22 General Fear Survey (Current) 0.174

(H3) 23 General Fear Survey (Current) 0.174

(H3) 24 General Fear Survey (Future) 0.174
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L.6 Results for Dehejia, Pop-Eleches and Samii (2021) analysis in Figure A5

We conduct a sign-generalization test of the results from Dehejia, Pop-Eleches and Samii (2021)

in Figure A5. To construct the p-values we use the point estimates and standard errors pre-

sented in the original paper. The original analysis can be found at https://doi.org/10.6084/m9.figshare.8794991.v2

in Appendix Table 1. The resulting p-values presented in Table A10.

Table A10: Numeric Values for Sign-generalization test for Dehejia, Pop-Eleches and Samii

(2021) in Figure A5.

Threshold Decade Year of Census Income Group Country P-value

Outcome: Have More Kids

1 1980 1980 Upper middle income Argentina 0.000

2 1990 1991 Upper middle income Argentina 0.000

3 2000 2001 Upper middle income Argentina 0.000

4 2000 2001 Upper middle income Armenia 0.000

5 1990 1991 Upper middle income Brazil 0.000

6 1970 1970 Upper middle income Brazil 0.000

7 2000 2000 Upper middle income Brazil 0.000

8 1980 1980 Upper middle income Brazil 0.000

9 1990 1998 Lower middle income Cambodia 0.000

10 1990 1992 High income Chile 0.000

11 1990 1990 Upper middle income China 0.000

12 1980 1982 Upper middle income China 0.000

13 1990 1993 Upper middle income Colombia 0.000

14 1980 1985 Upper middle income Colombia 0.000

15 2000 2005 Upper middle income Colombia 0.000

16 2000 2002 Upper middle income Cuba 0.000

17 1970 1975 High income France 0.000

18 1960 1968 High income France 0.000

19 1990 1999 High income France 0.000

20 1960 1962 High income France 0.000

21 1990 1990 High income France 0.000

22 1980 1982 High income France 0.000

23 1980 1981 High income Greece 0.000

24 1990 1991 High income Greece 0.000

25 2000 2001 High income Greece 0.000

26 1970 1971 High income Greece 0.000

27 1990 1990 High income Hungary 0.000
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Table A10: Numeric Values for Sign-generalization test for Dehejia, Pop-Eleches and Samii

(2021) in Figure A5. (continued)

Threshold Decade Year of Census Income Group Country P-value

28 1980 1980 High income Hungary 0.000

29 1990 1999 Lower middle income India 0.000

30 1990 1999 Lower middle income Kyrgyz Republic 0.000

31 1990 1990 Upper middle income Mexico 0.000

32 2000 2000 Upper middle income Mexico 0.000

33 1990 1993 Upper middle income Peru 0.000

34 2000 2007 Upper middle income Peru 0.000

35 1990 1995 Lower middle income Philippines 0.000

36 2000 2000 Lower middle income Philippines 0.000

37 1990 1990 Lower middle income Philippines 0.000

38 2000 2002 High income Romania 0.000

39 1990 1992 High income Romania 0.000

40 1970 1977 High income Romania 0.000

41 1990 1996 Upper middle income South Africa 0.000

42 1990 1991 High income Spain 0.000

43 2000 2001 High income Spain 0.000

44 2000 2000 Upper middle income Thailand 0.000

45 1990 1990 Upper middle income Thailand 0.000

46 1990 1991 High income United Kingdom 0.000

47 2000 2005 High income United States 0.000

48 2000 2000 High income United States 0.000

49 1980 1980 High income United States 0.000

50 1990 1990 High income United States 0.000

51 1970 1970 High income United States 0.000

52 1960 1960 High income United States 0.000

53 1980 1989 Lower middle income Vietnam 0.000

54 1990 1999 Lower middle income Vietnam 0.000

55 2000 2001 High income Austria 0.000

56 2000 2001 High income Italy 0.000

57 1980 1981 High income Austria 0.000

58 1990 1990 Upper middle income Ecuador 0.000

59 2000 2001 Upper middle income South Africa 0.000

60 1960 1960 Upper middle income Brazil 0.000

61 1990 1991 High income Austria 0.000

62 2000 2001 Lower middle income Nepal 0.000
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Table A10: Numeric Values for Sign-generalization test for Dehejia, Pop-Eleches and Samii

(2021) in Figure A5. (continued)

Threshold Decade Year of Census Income Group Country P-value

63 1990 1999 Upper middle income Belarus 0.000

64 1980 1982 High income Chile 0.000

65 2000 2001 Upper middle income Ecuador 0.000

66 1980 1980 Upper middle income Thailand 0.000

67 1970 1973 Upper middle income Colombia 0.000

68 2000 2002 High income Chile 0.000

69 1980 1981 High income Portugal 0.000

70 1990 1993 Lower middle income India 0.000

71 1970 1970 High income Chile 0.000

72 1990 1998 Lower middle income Pakistan 0.000

73 1970 1970 Upper middle income Argentina 0.000

74 1980 1984 Upper middle income Costa Rica 0.000

75 1980 1980 High income Switzerland 0.000

76 2000 2000 Lower middle income Mongolia 0.000

77 1970 1970 High income Hungary 0.000

78 1990 1990 High income Switzerland 0.000

79 2000 2000 Upper middle income Costa Rica 0.000

80 1970 1971 High income Austria 0.000

81 2000 2001 High income Hungary 0.000

82 1980 1980 High income Puerto Rico 0.000

83 1980 1987 Lower middle income India 0.000

84 1990 1990 High income Panama 0.000

85 1990 1995 Upper middle income Mexico 0.000

86 2000 2000 Upper middle income Malaysia 0.000

87 1970 1970 Upper middle income Thailand 0.000

88 1990 1990 High income Puerto Rico 0.000

89 1990 1997 Upper middle income Iraq 0.000

90 2000 2000 High income Puerto Rico 0.000

91 2000 2000 High income Switzerland 0.001

92 1970 1972 High income Israel 0.001

93 1980 1982 Upper middle income Ecuador 0.001

94 2000 2000 High income Panama 0.002

95 2000 2007 Upper middle income South Africa 0.002

96 2000 2001 High income Portugal 0.003

97 2000 2004 Upper middle income Jordan 0.004
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Table A10: Numeric Values for Sign-generalization test for Dehejia, Pop-Eleches and Samii

(2021) in Figure A5. (continued)

Threshold Decade Year of Census Income Group Country P-value

98 1990 1992 Lower middle income Bolivia 0.006

99 1980 1980 Upper middle income Malaysia 0.009

100 1990 1991 Upper middle income Malaysia 0.011

101 1980 1983 High income Israel 0.013

102 1980 1983 Lower middle income India 0.017

103 2000 2001 Lower middle income Bolivia 0.017

104 1990 1991 High income Portugal 0.023

105 1970 1976 Lower middle income Bolivia 0.205

106 2000 2005 High income Puerto Rico 0.248

107 1970 1970 Upper middle income Mexico 0.281

108 1970 1974 Upper middle income Ecuador 0.371

109 1990 1999 Lower middle income Kenya 0.409

110 1990 1998 Low income Mali 0.534

111 1970 1970 Upper middle income Malaysia 0.581

112 1970 1970 High income Switzerland 0.643

113 1980 1980 High income Panama 0.955

114 1980 1989 Lower middle income Mongolia 1.000

115 1990 1995 High income Israel 1.000

116 1990 1996 Low income Guinea 1.000

117 1980 1983 Low income Guinea 1.000

118 1970 1970 High income Panama 1.000

119 1980 1988 Lower middle income Senegal 1.000

120 1970 1973 Lower middle income Pakistan 1.000

121 2000 2002 Low income Rwanda 1.000

122 2000 2002 High income Slovenia 1.000

123 1970 1970 High income Puerto Rico 1.000

124 1960 1960 High income Panama 1.000

125 2000 2002 Lower middle income Tanzania 1.000

126 2000 2000 Lower middle income Ghana 1.000

127 1980 1987 Low income Mali 1.000

128 1990 1991 Low income Rwanda 1.000

129 2000 2002 Lower middle income Senegal 1.000

130 2000 2002 Low income Uganda 1.000

131 1970 1973 Upper middle income Costa Rica 1.000

132 1980 1989 Lower middle income Kenya 1.000
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Table A10: Numeric Values for Sign-generalization test for Dehejia, Pop-Eleches and Samii

(2021) in Figure A5. (continued)

Threshold Decade Year of Census Income Group Country P-value

133 1990 1991 Low income Uganda 1.000

134 1980 1988 Lower middle income Tanzania 1.000

Outcome: Economically Active

1 1990 1990 High income United States 0.000

2 1980 1980 High income United States 0.000

3 1980 1982 Upper middle income China 0.001

4 1980 1982 High income France 0.002

5 2000 2000 High income United States 0.013

6 1990 1990 High income Hungary 0.019

7 2000 2001 Upper middle income Armenia 0.154

8 1990 1991 High income United Kingdom 0.203

9 1980 1987 Lower middle income India 0.215

10 1990 1990 Upper middle income China 0.425

11 1980 1981 High income Austria 0.955

12 2000 2002 Low income Rwanda 1.000

13 2000 2001 High income Portugal 1.000

14 1990 1990 Lower middle income Philippines 1.000

15 1990 1990 High income France 1.000

16 1980 1980 High income Switzerland 1.000

17 1990 1991 Upper middle income Argentina 1.000

18 1990 1999 High income France 1.000

19 1990 1991 High income Austria 1.000

20 1990 1990 Upper middle income Mexico 1.000

21 2000 2000 Upper middle income Malaysia 1.000

22 2000 2001 Lower middle income Nepal 1.000

23 1960 1960 High income United States 1.000

24 1970 1971 High income Greece 1.000

25 1970 1970 High income United States 1.000

26 2000 2001 High income Hungary 1.000

27 1990 1999 Lower middle income Kyrgyz Republic 1.000

28 1960 1962 High income France 1.000

29 1990 1999 Upper middle income Belarus 1.000

30 1990 1999 Lower middle income Vietnam 1.000

31 1960 1968 High income France 1.000

32 2000 2000 High income Puerto Rico 1.000
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Table A10: Numeric Values for Sign-generalization test for Dehejia, Pop-Eleches and Samii

(2021) in Figure A5. (continued)

Threshold Decade Year of Census Income Group Country P-value

33 2000 2001 High income Austria 1.000

34 1990 1991 Upper middle income Malaysia 1.000

35 1980 1989 Lower middle income Vietnam 1.000

36 2000 2000 Upper middle income Brazil 1.000

37 1980 1983 Low income Guinea 1.000

38 1980 1980 Upper middle income Malaysia 1.000

39 2000 2002 High income Chile 1.000

40 1990 1991 Upper middle income Brazil 1.000

41 2000 2001 Upper middle income Argentina 1.000

42 2000 2000 Lower middle income Ghana 1.000

43 1970 1970 Upper middle income Brazil 1.000

44 2000 2002 Lower middle income Tanzania 1.000

45 1970 1973 Lower middle income Pakistan 1.000

46 1990 1991 Low income Rwanda 1.000

47 1990 1991 Low income Uganda 1.000

48 1980 1980 Upper middle income Argentina 1.000

49 1980 1989 Lower middle income Kenya 1.000

50 1990 1990 High income Switzerland 1.000

51 2000 2002 High income Slovenia 1.000

52 1980 1983 Lower middle income India 1.000

53 1990 1991 High income Greece 1.000

54 2000 2000 Upper middle income Mexico 1.000

55 1970 1970 High income Switzerland 1.000

56 1990 1992 High income Romania 1.000

57 1990 1993 Lower middle income India 1.000

58 1970 1970 Upper middle income Argentina 1.000

59 1970 1975 High income France 1.000

60 2000 2002 Lower middle income Senegal 1.000

61 1990 1999 Lower middle income Kenya 1.000

62 2000 2001 High income Spain 1.000

63 1990 1991 High income Spain 1.000

64 1980 1980 High income Panama 1.000

65 1980 1985 Upper middle income Colombia 1.000

66 1970 1972 High income Israel 1.000

67 2000 2002 Upper middle income Cuba 1.000
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Table A10: Numeric Values for Sign-generalization test for Dehejia, Pop-Eleches and Samii

(2021) in Figure A5. (continued)

Threshold Decade Year of Census Income Group Country P-value

68 2000 2001 Upper middle income Ecuador 1.000

69 1980 1988 Lower middle income Senegal 1.000

70 2000 2005 High income Puerto Rico 1.000

71 1990 1993 Upper middle income Peru 1.000

72 1980 1981 High income Greece 1.000

73 1960 1960 Upper middle income Brazil 1.000

74 2000 2000 High income Switzerland 1.000

75 1990 1995 Upper middle income Mexico 1.000

76 1990 1990 High income Panama 1.000

77 2000 2005 High income United States 1.000

78 1980 1980 Upper middle income Brazil 1.000

79 1990 1997 Upper middle income Iraq 1.000

80 1970 1970 High income Panama 1.000

81 2000 2001 Lower middle income Bolivia 1.000

82 1990 1996 Upper middle income South Africa 1.000

83 1980 1984 Upper middle income Costa Rica 1.000

84 1990 1999 Lower middle income India 1.000

85 2000 2001 High income Greece 1.000

86 1980 1982 High income Chile 1.000

87 1990 1992 High income Chile 1.000

88 2000 2000 Upper middle income Costa Rica 1.000

89 1970 1971 High income Austria 1.000

90 2000 2002 Low income Uganda 1.000

91 1980 1981 High income Portugal 1.000

92 1980 1982 Upper middle income Ecuador 1.000

93 2000 2001 High income Italy 1.000

94 2000 2007 Upper middle income Peru 1.000

95 1970 1976 Lower middle income Bolivia 1.000

96 1970 1970 Upper middle income Malaysia 1.000

97 2000 2002 High income Romania 1.000

98 1970 1970 Upper middle income Mexico 1.000

99 2000 2007 Upper middle income South Africa 1.000

100 2000 2000 Lower middle income Mongolia 1.000

101 1990 1991 High income Portugal 1.000

102 2000 2005 Upper middle income Colombia 1.000
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Table A10: Numeric Values for Sign-generalization test for Dehejia, Pop-Eleches and Samii

(2021) in Figure A5. (continued)

Threshold Decade Year of Census Income Group Country P-value

103 2000 2004 Upper middle income Jordan 1.000

104 1980 1987 Low income Mali 1.000

105 1970 1973 Upper middle income Costa Rica 1.000

106 1980 1988 Lower middle income Tanzania 1.000

107 1990 1998 Lower middle income Cambodia 1.000

108 1990 1996 Low income Guinea 1.000

109 2000 2001 Upper middle income South Africa 1.000

110 1990 1990 High income Puerto Rico 1.000

111 1990 1992 Lower middle income Bolivia 1.000

112 1990 1993 Upper middle income Colombia 1.000

113 1970 1973 Upper middle income Colombia 1.000

114 1990 1990 Upper middle income Ecuador 1.000

115 1990 1998 Low income Mali 1.000

116 1960 1960 High income Panama 1.000

117 2000 2000 High income Panama 1.000

118 1970 1970 High income Chile 1.000

119 1990 1995 High income Israel 1.000

120 1970 1974 Upper middle income Ecuador 1.000
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L.7 Results for Bisbee et al. (2017) analysis in Figure A6

We conduct a sign-generalization test of the results from Bisbee et al. (2017) in Figure A6. To

construct the p-values we use the point estimates and standard errors presented in the original

paper. The original analysis can be found at https://www.journals.uchicago.edu/doi/epdf/10.1086/691280

in Table A1. The resulting p-values presented in Table A11.

Table A11: Numeric Values for Sign-generalization test for Bisbee et al. (2017) in Figure A6.

Threshold Decade Year of Census Income Group Country P-value

Outcome: Economically Active

1 1980 1980 High income United States 0.000

2 1990 1990 High income United States 0.000

3 1980 1982 High income France 0.001

4 1980 1982 Upper middle income China 0.001

5 2000 2000 High income United States 0.005

6 1990 1990 High income Hungary 0.025

7 1990 1990 Upper middle income China 0.244

8 2000 2001 Upper middle income Armenia 0.309

9 1990 1999 Lower middle income Kyrgyz Republic 0.431

10 2000 2001 High income Hungary 0.960

11 1990 1991 Upper middle income Argentina 1.000

12 1980 1987 Lower middle income India 1.000

13 1990 1990 High income France 1.000

14 1990 1990 Lower middle income Philippines 1.000

15 1960 1960 High income United States 1.000

16 1990 1990 Upper middle income Mexico 1.000

17 2000 2001 High income Portugal 1.000

18 1970 1970 High income United States 1.000

19 1970 1971 High income Greece 1.000

20 1980 1980 High income Switzerland 1.000

21 1990 1999 High income France 1.000

22 2000 2000 Upper middle income Malaysia 1.000

23 1960 1962 High income France 1.000

24 1990 1999 Upper middle income Belarus 1.000

25 2000 2001 Lower middle income Nepal 1.000

26 1960 1968 High income France 1.000

27 1990 1999 Lower middle income Vietnam 1.000

28 1990 1991 Upper middle income Brazil 1.000

29 2000 2000 High income Puerto Rico 1.000
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Table A11: Numeric Values for Sign-generalization test for Bisbee et al. (2017) in Figure A6.

(continued)

Threshold Decade Year of Census Income Group Country P-value

30 2000 2001 Upper middle income Argentina 1.000

31 1980 1989 Lower middle income Vietnam 1.000

32 1990 1991 Upper middle income Malaysia 1.000

33 2000 2002 High income Chile 1.000

34 2000 2000 Upper middle income Brazil 1.000

35 1980 1980 Upper middle income Malaysia 1.000

36 1970 1970 Upper middle income Brazil 1.000

37 1980 1980 Upper middle income Argentina 1.000

38 1990 1991 High income Greece 1.000

39 2000 2002 Low income Rwanda 1.000

40 1990 1993 Lower middle income India 1.000

41 2000 2000 Upper middle income Mexico 1.000

42 1990 1990 High income Switzerland 1.000

43 1970 1970 High income Switzerland 1.000

44 2000 2002 Lower middle income Tanzania 1.000

45 1980 1988 Lower middle income Tanzania 1.000

46 1980 1983 Lower middle income India 1.000

47 1970 1975 High income France 1.000

48 1980 1983 Low income Guinea 1.000

49 2000 2002 High income Slovenia 1.000

50 1980 1980 High income Panama 1.000

51 1970 1970 Upper middle income Argentina 1.000

52 1990 1992 High income Romania 1.000

53 2000 2001 High income Spain 1.000

54 1970 1972 High income Israel 1.000

55 2000 2001 Upper middle income Ecuador 1.000

56 2000 2002 Upper middle income Costa Rica 1.000

57 2000 2005 High income Puerto Rico 1.000

58 1990 1991 High income Spain 1.000

59 1980 1985 Upper middle income Colombia 1.000

60 1980 1980 Upper middle income Brazil 1.000

61 1990 1995 Upper middle income Mexico 1.000

62 1990 1997 Upper middle income Iraq 1.000

63 1980 1988 Lower middle income Senegal 1.000

64 1960 1960 Upper middle income Brazil 1.000
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Table A11: Numeric Values for Sign-generalization test for Bisbee et al. (2017) in Figure A6.

(continued)

Threshold Decade Year of Census Income Group Country P-value

65 2000 2005 High income United States 1.000

66 1990 1993 Upper middle income Peru 1.000

67 1980 1987 Low income Mali 1.000

68 1980 1981 High income Greece 1.000

69 2000 2001 Lower middle income Bolivia 1.000

70 1990 1996 Upper middle income South Africa 1.000

71 1990 1999 Lower middle income India 1.000

72 2000 2000 High income Switzerland 1.000

73 1990 1990 High income Panama 1.000

74 1980 1984 Upper middle income Costa Rica 1.000

75 2000 2002 Low income Uganda 1.000

76 1970 1970 High income Panama 1.000

77 1990 1992 High income Chile 1.000

78 1980 1982 High income Chile 1.000

79 2000 2002 Lower middle income Senegal 1.000

80 2000 2001 High income Greece 1.000

81 2000 2000 Upper middle income Costa Rica 1.000

82 2000 2007 Upper middle income Peru 1.000

83 1970 1970 Upper middle income Malaysia 1.000

84 1980 1982 Upper middle income Ecuador 1.000

85 1980 1981 High income Portugal 1.000

86 2000 2001 High income Italy 1.000

87 1970 1976 Lower middle income Bolivia 1.000

88 1970 1973 Upper middle income Costa Rica 1.000

89 1990 1991 High income Portugal 1.000

90 2000 2002 High income Romania 1.000

91 2000 2007 Upper middle income South Africa 1.000

92 1970 1970 Upper middle income Mexico 1.000

93 2000 2000 Lower middle income Mongolia 1.000

94 2000 2005 Upper middle income Colombia 1.000

95 2000 2004 Upper middle income Jordan 1.000

96 1980 1989 Lower middle income Kenya 1.000

97 1990 1998 Lower middle income Cambodia 1.000

98 1990 1995 High income Israel 1.000
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Table A11: Numeric Values for Sign-generalization test for Bisbee et al. (2017) in Figure A6.

(continued)

Threshold Decade Year of Census Income Group Country P-value

99 1990 1996 Low income Guinea 1.000

100 1990 1991 Low income Uganda 1.000

101 1960 1960 High income Panama 1.000

102 1990 1990 High income Puerto Rico 1.000

103 1990 1993 Upper middle income Colombia 1.000

104 2000 2001 Upper middle income South Africa 1.000

105 1990 1992 Lower middle income Bolivia 1.000

106 1990 1998 Low income Mali 1.000

107 2000 2000 Lower middle income Ghana 1.000

108 1970 1973 Upper middle income Colombia 1.000

109 2000 2000 High income Panama 1.000

110 1990 1990 Upper middle income Ecuador 1.000

111 1970 1974 Upper middle income Ecuador 1.000

112 1970 1970 High income Chile 1.000
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L.8 Results for Dunning et al. (2019) analysis in Figure A4

We conduct a sign-generalization test of the results from Dunning et al. (2019) in Figure A4.

To construct the p-values we use the point estimates and standard errors presented in the

original paper. The resulting p-values presented in Table A12.
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Table A12: Numeric Values for Sign-generalization test for Dunning et al. (2019) in Figure

A4.

Threshold Subgroup Variation Context Variation P-value

(H1) Vote Choice

1 Good News Uganda 1 0.897

2 Bad News Mexico 1.000

3 Bad News Uganda 2 1.000

4 Good News Uganda 2 1.000

5 Good News Brazil 1.000

6 Bad News Brazil 1.000

7 Good News Benin 1.000

8 Bad News Benin 1.000

9 Good News Burkina Faso 1.000

10 Bad News Uganda 1 1.000

11 Good News Mexico 1.000

12 Bad News Burkina Faso 1.000

(H2) Turnout

1 Good News Uganda 1 0.176

2 Good News Brazil 1.000

3 Good News Uganda 2 1.000

4 Bad News Uganda 1 1.000

5 Bad News Uganda 2 1.000

6 Bad News Brazil 1.000

7 Good News Benin 1.000

8 Bad News Benin 1.000

9 Good News Burkina Faso 1.000

10 Good News Mexico 1.000

11 Bad News Burkina Faso 1.000

12 Bad News Mexico 1.000
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