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Generalizing causal estimates in randomized experiments to a broader
target population is essential for guiding decisions by policymakers and prac-
titioners in the social and biomedical sciences. While recent papers have de-
veloped various weighting estimators for the population average treatment
effect (PATE), many of these methods result in large variance because the ex-
perimental sample often differs substantially from the target population and
estimated sampling weights are extreme. We investigate this practical prob-
lem motivated by an evaluation study of the Job Training Partnership Act
(JTPA), where we examine how well we can generalize the causal effect of
job training programs beyond a specific population of economically disadvan-
taged adults and youths. In particular, we propose post-residualized weight-
ing in which we use the outcome measured in the observational population
data to build a flexible predictive model (e.g., with machine learning) and
residualize the outcome in the experimental data before using conventional
weighting methods. We show that the proposed PATE estimator is consistent
under the same assumptions required for existing weighting methods, impor-
tantly without assuming the correct specification of the predictive model. We
demonstrate the efficiency gains from this approach through our JTPA appli-
cation: we find a reduction of between 5% and 25% in variance.

1. Introduction. The Job Training Partnership Act (JTPA) was introduced by the U.S.
Congress in 1982 to help provide employment and training programs to economically disad-
vantaged adults and youths. To assess its effectiveness, the national JTPA study evaluated the
impact of the program across a diverse set of 16 experimental sites between 1987 and 1989.
Eligible individuals assigned to treatment were given access to the JTPA services, while those
assigned to control were told that the services were not available. Eighteen months later, re-
searchers checked on whether these study participants were employed and measured their
recent earnings (Bloom et al. (1993)). The hope is that those offered the program would be
more often employed and would generally be earning higher wages.

Each site can be considered a stand-alone randomized trial. Each site has a different collec-
tion of individuals from the other sites. If a policymaker had only run their experiment in one
specific population, how representative would their results have been for the other popula-
tions? This question is the essence of a current and serious critique of large-scale randomized
evaluations: does a rigorous and robust finding regarding a program evaluated in a specific
population actually shed light on wider questions of a program’s effectiveness for a “real-
world” population? Originally, the “credibility revolution” elevated the role of randomized,
controlled trials (RCTs), generally praised for their strong internal validity (Baldassarri and
Abascal (2017), Banerjee and Duflo (2009), Falk and Heckman (2009)). RCTs are attractive
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in that they allow researchers to draw causal inferences about treatment effects with only
minimal assumptions, but only for the experimental sample. And perhaps this last clause is
too great a cost; perhaps the emphasis on causality has led researchers to overly narrow the
scope of their inquiry (Deaton and Cartwright (2018), Huber (2013)). Especially with a pol-
icy finding, if one cannot generalize, what should one make of a found result? Concerns about
generalizability span the social and biomedical sciences and are related to discussions about
participant recruitment in pragmatic study designs (Ford and Norrie (2016)).

This critique has inspired a robust literature on methods for how to generalize experimental
result to broader populations of interest. In our case, for example, one could imagine extend-
ing the results found for a specific population in one site to populations living in the other
sites, adjusting the impact estimate to account for differences in populations served. The gen-
eralizability literature has provided clear outlines for the necessary assumptions for such gen-
eralization, providing tools to identify the population average treatment effect (PATE), that is,
the effect of the experimental treatment in a clearly defined target population that differs from
the experimental sample (Bareinboim and Pearl (2016), Cole and Stuart (2010), Egami and
Hartman (2022)). In practice, the most common approaches model the experimental sample
inclusion probability, with the PATE then estimated using weighting estimators (Buchanan
et al. (2018), Hartman et al. (2015), Stuart et al. (2011), Tipton (2013)). Alternative esti-
mators focus on modeling treatment effect heterogeneity (Kern et al. (2016), Nguyen et al.
(2017)) or doubly robust estimation (Dahabreh et al. (2019)).

Generalizing, however, can be prohibitively costly. In practice, weighted estimators are
often far more imprecise than unweighted estimators, especially when the experimental sam-
ple differs substantially from the target population. This makes it difficult for policymakers
and practitioners to draw conclusions about the impact of treatment in the target population
to guide their policy recommendations. Indeed, Miratrix et al. (2018) empirically found that
weighted estimators often increase the mean squared error for the PATE, compared to a biased
estimator that ignores sampling weights, due to paying for a smaller bias with much larger
standard errors. More generally, considering the bias-variance tradeoff, the cost the large pre-
cision loss associated with conventional weighting methods makes it unclear if it is “worth
weighting” and questions the applicability of these weighting methods that researchers are
advocating for.

This provides a quandary: the more the target population differs from the sample, the
greater the cost of generalizing, due to more extreme weights, but the greater the need to
generalize to keep the findings of the original experiment relevant. In this work we seek
to mitigate this tradeoff by exploiting a valuable resource commonly left on the table: the
outcome data measured in the population. In particular, we aim to incorporate this additional
observational population data to reduce the noise from generalizing an experimental result.
Population data often have larger sample sizes and, therefore, provide an opportunity to model
complex covariate-outcome relationships with more flexible modeling approaches. It is this
opportunity—to incorporate large population data sets that contain outcome data to improve
precision—that serves as the foundation of our method.

The multisite design of our JPTA experiment serves as an ideal test bed for our method. We
generalize the results of each site individually to a target population defined by the units in the
other 15 sites, allowing us to benchmark our estimates against the experimentally identified
causal estimate of the excluded sites. We can then evaluate any precision gains, as compared
to other generalization approaches as well as to no adjustment. We can also, for each site
in turn, assess whether one should generalize, based on a diagnostic test. Ultimately, using
this within study comparison approach (LaLonde (1986)), we find between a 5% to 25%
reduction in variance from exploiting population data and outcomes for those sites where we
determine that our methods are applicable.
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Our method is post-residualized weighting, where we leverage outcome data measured in
the population to improve precision in estimation of the PATE. We begin by constructing
a predictive model of the outcome using the population data. We then use this to residual-
ize the experimental outcome data, and these residuals replace the experimental outcome in
the standard inverse probability weighting estimators used for generalization. Identification
of the PATE proceeds under the same assumptions required for existing inverse probability
weighting methods, namely, that the sampling weights are correctly specified. We show that
this estimator is consistent, regardless of the residualizing model constructed in the popula-
tion data. Therefore, we can safely use machine learning methods to build a predictive model.
We then establish under what conditions the proposed post-residualized weighting estimator
is more efficient than existing methods.

We also extend our estimator to the weighted least squares framework, which has three
advantages: (1) it incorporates the well-known benefits of stabilized weighting estimators
(i.e., Hàjek estimators), (2) it allows for additional precision gains from prognostic variables
measured only within the experiment, and (3) it addresses concerns about scaling differences
between the outcomes measured in the experiment and the population data. Importantly, we
also provide a diagnostic that allows researchers to assess when the post-residualized weight-
ing method is likely to result in efficiency gains.

As far as we know, using covariates and outcome data in this manner has not been in-
vestigated. While inverse probability weighting methods do leverage population data about
pre-treatment covariates when modeling the sampling weights, use of outcome data has pri-
marily been limited to use in placebo tests (Cole and Stuart (2010), Hartman et al. (2015)).
Recently, the data fusion literature proposed using experimental data to help aid the estima-
tion of causal effects in observational studies (e.g., see Athey, Chetty and Imbens (2020),
Athey et al. (2019), Kallus and Mao (2020)) which bears some similarity to our problem.

We proceed by further introducing our empirical application. We then introduce notation
and existing methods for estimating the population average treatment effect from experi-
mental data in Section 2. In Section 3 we introduce post-residualized weighting, prove its
statistical properties, and introduce a diagnostic to assess whether researchers should expect
efficiency gains in their applications. We consider both a weighted estimator (a.k.a., a Hàjek
estimator) and a weighted least squares estimator. We extend our results to a case in which we
include the predicted outcome as a covariate in Section 4. Finally, we provide simulation ev-
idence supporting the performance of post-residualized weighting estimators and diagnostic
tools in Section 5 and apply them to the Job Training Partnership Act in Section 6.

1.1. Background and data. The Job Training Partnership Act (JTPA) was a large study
with a 2:1 treatment to control ratio. A variety of outcomes were measured with a follow-
up survey 18 months after assignment (Bloom et al. (1993)). We use the 16 experimental
sites from the national JTPA study as the basis for our analysis. While the original study
focused on four target groups, adult women and men (categorized formally as ages 22 and
older) and female and male out-of-school youths (ages 16–21), we focus our analysis on
adult women, the largest target group within the JTPA study.1 We consider two different
outcomes: employment status (binary outcome) and total earnings (zero-inflated, continuous
outcome). Across the 16 sites, the average effect on earnings was $1240 and employment
was 1.63%, but point estimates across sites ranged from −$5210 in Butte, MT, to $3030 in
Providence, RI, for earnings and −7% in Butte, MT, and Marion, OH, to 7% in Heartland,
FL, and Providence, RI. Had a policymaker only run their experiment in Providence, RI,

1The estimated impacts of JTPA for the other target groups were not found to be statistically significant in the
original study.
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they may have concluded that the treatment was effective but not so in Butte, MT. Weighted
estimators can adjust for demographic differences across sites, but many of the sites, such as
Butte, MT, contain few units, emphasizing the need for precise estimators when generalizing
results to other populations.

Using a within study comparison approach, we generalize the results of each site individu-
ally to a target population defined by the units in the other 15 sites, allowing us to benchmark
our estimator against the experimentally identified causal estimate of the excluded sites and
evaluate precision gains from post-residualized weighting. A summary of the JTPA experi-
mental setup is provided in Supplementary Material Table A5 (Huang et al. (2023)).

2. Existing estimators for generalization.

2.1. Setup. We begin by defining the target population as an infinite super-population P
with probability distribution F and probability density dF for which we wish to infer the
effectiveness of treatment. Following Buchanan et al. (2018), suppose we observe n units as
the “experimental sample,” but, as with most experiments in practice, the selection into the
experiment from the target population is biased. Let S represent the random set of n indices
for the units in the experimental sample.

Units in our experimental sample are treated, or not, with treatment indicator Ti = 1 for
units assigned to treatment and Ti = 0 for control. Using the potential outcomes framework
(Neyman (1923), Rubin (1974)), we define Yi(t) to be the potential outcome of unit i that
would realize if unit i receives treatment Ti = t , where t ∈ {0,1}. Our primary causal quantity
of interest is the population average treatment effect (PATE), which is formally defined as

(1) τ := EF {Yi(1) − Yi(0)},
where the expectation is taken over the target population distribution F . This is in contrast to
the sample average treatment effect (SATE):

τS := E
F̃
{Yi(1) − Yi(0)},

where the expectation is taken over the experimental sample distribution F̃ , described below.
For each unit in the experiment, only one of the potential outcome variables can be

observed, and the realized outcome variable for unit i is denoted by Yi = TiYi(1) +
(1 − Ti)Yi(0). We also observe pre-treatment covariates Xi for units in the experiment.
We use F̃ to represent the sampling distribution for the experimental sample, that is,

{Yi(1), Yi(0), Ti,Xi}ni=1
i.i.d.∼ F̃ with density dF̃ . Because we consider settings where the se-

lection into the experiment from the target population P is biased, F �= F̃ .
We assume that treatment assignment is randomized within the experiment.

ASSUMPTION 1 (Randomization within Experiment).

(2) dF̃ (Yi(1), Yi(0), Ti,Xi) = dF̃ (Yi(1), Yi(0),Xi ) · dF̃ (Ti).

Under this assumption the SATE can be estimated without bias2 using a difference-in-
means estimator:

(3) τ̂S = 1∑
i∈S Ti

∑
i∈S

TiYi − 1∑
i∈S(1 − Ti)

∑
i∈S

(1 − Ti)Yi.

2Assuming that
∑

i Ti is fixed; otherwise, the bias is expected to be small.
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The SATE is important for evaluating the effectiveness of treatment. However, researchers
often want to know to what extent the internally valid findings of an experiment are externally
valid to the target population (Cole and Stuart (2010), Egami and Hartman (2022), Miratrix
et al. (2018)). When the experimental sample is randomly drawn from the target popula-
tion, F = F̃ , and τ̂S can be used as an unbiased estimator for τ . However, in most settings
experimental units are not randomly drawn from the target population with equal probability.

To estimate the PATE, we also assume we observe an i.i.d. sample of N units from the
target super-population P as the “population data” which is separate from the experimen-
tal sample. This design is most common in the social sciences and is called the nonnested
design in that the experimental sample is not a subset of the population data (Colnet et al.
(2020)).3 Typically, the size of the population data is much larger than the experimental data,
that is, N � n. In the conventional setup, researchers only observe pre-treatment covariates
Xi for each unit i in the population data. In the next subsection, we review assumptions and
estimators for the PATE under this conventional setup. In Section 3 we then consider our
setting in which researchers also observe an outcome measure in addition to pre-treatment
covariates in the population data. Importantly, because the treatment is not randomized in the
population data, we cannot identify the PATE just using the population data without further
assumption.

2.2. Assumptions. We make the standard assumptions of no interference and that treat-
ments are identically administered across all units (i.e., SUTVA, defined in Rubin (1980)).
In order to identify the PATE using experimental data, we require additional assumptions
about the sampling of the experimental units. First, we assume that, conditional on a set of
pre-treatment covariates Xi , the sample selection mechanism is ignorable. Below we present
this more formally.

ASSUMPTION 2 (Ignorability of Sampling and Potential Outcomes).

(4) dF(Yi(1), Yi(0) | Xi = x) = dF̃ (Yi(1), Yi(0) | Xi = x).

Assumption 2 states that, conditional on Xi , the distribution of the potential outcomes
{Yi(1), Yi(0)} is the same across the experimental sample and the target population (Kern
et al. (2016), Pearl and Bareinboim (2014), Stuart et al. (2011)).4 We also assume that, for
any pre-treatment covariate profile Xi = x we might see in the population, we have a nonzero
chance of seeing it in the sample as well (Westreich and Cole (2010)):

ASSUMPTION 3 (Positivity). For all x, we have

(5) dF(Xi = x) > 0 ⇒ dF̃ (Xi = x) > 0.

2.3. Estimation of PATE. There is a robust and growing literature on methods for esti-
mating the PATE. The most common approach is the inverse probability weighting estimator

3While we focus on the nonnested design in this paper, the same proposed approach is useful for the nested de-
sign where the experimental sample is a subset of the population data. The main difference arises in the analytical
expressions of the efficiency gain from our proposed approach.

4For identification of the PATE, a weaker assumption of conditional ignorability of sampling and treatment
effect heterogeneity may be invoked instead. However, our variance derivations rely on the conditional ignorability
of sampling and potential outcomes.
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(IPW) (Cole and Stuart (2010)). The IPW estimator relies on sampling weights, usually de-
fined as an inverse of the probability of being sampled into the experiment. In our case, given
the infinite superpopulation defined by F , this translates to, for each unit i,

wi ∝ 1

π(Xi )
,

with π(Xi ) the relative density of

(6) π(Xi ) = dF̃ (Xi )

dF (Xi )
.

Weights are typically estimated using a binary outcome model, such as logistic regression,
by exploiting the fact that weights are proportional to the relative probability of being in the
observed population data to the probability of being in the experimental sample, conditional
on being in either set:

wi ∝ Pr(Si = 0 | Xi )

Pr(Si = 1 | Xi )
,

where Si takes on a value of 1, if the unit belongs to the experimental sample, and 0 if the
unit belongs to the observed population data.

Researchers can estimate Pr(Si = s | Xi) using a binary outcome model, regressing Si

on Xi using the stacked dataset of both the experimental and population data (Buchanan
et al. (2018), Egami and Hartman (2021), O’Muircheartaigh and Hedges (2014), Stuart et al.
(2011)). Alternatively, researchers can use balancing methods, such as entropy balancing,
which estimates weights such that weighted moments (e.g., means of each pre-treatment
covariate Xi) of the experimental data equal the corresponding moments of the observed
population data (Deville and Särndal (1992), Hainmueller (2012), Hartman et al. (2015)).

Once researchers have estimated the sampling weights, the PATE can be estimated using a
weighted estimator, also known as the Hàjek estimator,

(7) τ̂W :=
∑

i∈S ŵiTiYi∑
i∈S ŵiTi

−
∑

i∈S ŵi(1 − Ti)Yi∑
i∈S ŵi(1 − Ti)

.

As with estimation of the SATE, researchers can also include covariate adjustment to in-
crease efficiency. This approach is popular because, while the estimation of the weights re-
quires covariates to be measured across both the population and the experimental data, co-
variate adjustment can leverage covariates that are only measured in the experimental data
(Stuart and Rhodes (2017)).

The weighted least squares estimator τ̂wLS for the PATE can be computed via a weighted
regression of the outcome on an intercept, the treatment indicator and pre-treatment covari-
ates using the estimated weights. Formally,

(8) (τ̂wLS, α̂, γ̂ ) = argmin
τ,α,γ

1

n

∑
i∈S

ŵi

(
Yi − (τTi + α + X̃�

i γ )
)2

,

where X̃i are experimental pre-treatment covariates included in the covariate adjustment.
Covariates X̃i can differ from the Xi required for Assumptions 2–3. The weighted estimator
(equation (7)) is a special case of this weighted least squares estimator (equation (8)) because
it is numerically equivalent to the estimated coefficient of the treatment indicator when no
covariate is included, that is, X̃i = ∅. Because the weighted estimator is a special case of
the weighted least squares estimator, we focus on the weighted least squares estimator in
this paper, but use the simpler weighted estimator to illustrate intuitions when appropriate.
Under Assumptions 1–3 and the consistent estimation of the sampling weights, the weighted
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estimator τ̂W and the weighted least squares estimator τ̂wLS are both consistent for the PATE,
regardless of what covariates X̃ we include as covariate adjustment (Buchanan et al. (2018),
Dahabreh et al. (2019)).

In practice, weighted estimators can suffer from large variance due to extreme weights,
which in this case depends on how much the individual unit-level probabilities of inclu-
sion in the experimental sample varies relative to their average probability of inclusion. This
problem has been highlighted in the observational causal inference literature with respect to
inverse propensity score weighted estimators, in which large imbalances between treatment
and control groups can result in extreme weights (Kang and Schafer (2007), Stuart (2010)).
This issue is often exacerbated in the generalization setting, where imbalances between a
convenience experimental sample and target population can be relatively large. As a result,
losses in precision from weighting can be challenging to overcome when generalizing from
the SATE to the PATE (Miratrix et al. (2018)).

3. Post-residualized Weighting. Existing methods, such as the weighted estimator and
weighted least squares estimator described above, require pre-treatment covariate data, mea-
sured in both the experimental sample and target population, for estimating the sampling
weights. However, researchers often have access to an outcome variable in the observational
population data as well. Our proposed method, post-residualized weighting, aims to improve
precision in estimation of the PATE by leveraging this outcome variable measured in the ob-
servational population data; see Figure 1 for a visualization of the difference in settings from
conventional methods.

In addition to our JTPA application, which inspires our method, we next describe two
canonical social science examples below that motivate the data settings that underpin our
method. We return to these examples, in addition to the JTPA application, for conceptual
clarity. We describe our benchmark analysis of the JTPA data in Section 6.

EXAMPLE (Get-Out-the-Vote (GOTV) experiments). Political scientists have conducted
a number of field experiments to evaluate the impact of canvassing efforts, including door-
to-door, phone, and mail, on voter turnout. Such GOTV experiments typically rely on ad-
ministrative data to measure the outcome, namely, voter turnout data from the secretary of
state. These experiments are often conducted in a small geographic region (e.g., New Haven,
Connecticut, in Gerber and Green (2000)), but scholars are often interested in generalizing

FIG. 1. Data requirements. Conventional estimation methods only use the covariate data Xi (in light gray).
Our proposed approach leverages the outcome data in addition to the covariate data at the population level (as
highlighted in dark gray).
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the effect to broader populations, such as for a statewide election. Importantly, when con-
sidering generalization, the outcome variable of voter turnout is available not only for the
experimental data but also for the broader target population of interest. In our framework we
could use this information about voter turnout measured in the observational population data
to improve precision in the estimation of the PATE.

EXAMPLE (Education experiments). Education research relies on experiments to evalu-
ate the performance of classroom interventions, such as the impact of smaller class size on
curriculum-based and standardized tests (e.g., Word et al. (1990)). These experiments are of-
ten done in partnership with school systems. For example, the Tennessee STAR experiment
was conducted in classrooms across Tennessee. However, researchers are interested in the
broader impact of such interventions. For example, a researcher may ask what the long term
impact of small class sizes in primary school is on standardized test scores, such as the SAT,
for all public schools in the United States. To estimate the PATE, existing methods use de-
mographic variables from a random sample of public school students to construct sampling
weights. In our framework we can additionally use SAT scores measured for such a sample
to improve estimation accuracy.

REMARK. We emphasize that the outcome variable available in the population data can
be either the potential outcomes under treatment Yi(1), the potential outcomes under con-
trol Yi(0), or their mix. Indeed, researchers do not need to know the treatment condition of
units in the target population. This is because consistency of our proposed approach does
not depend on the correct specification of a predictive model we will build with the outcome
variable available in the population data (see Theorem 1 below). More generally, the outcome
variable available in the population data can even be a proxy of the outcome variable in the
experimental data (i.e., not equal to either the potential outcomes under treatment or control),
and we consider this case in Section 4.

3.1. Post-residualized weighted estimators. The key idea of our proposed post-residual-
ized weighting approach is that we estimate a predictive model with the outcome measured
in the population data and then use this estimated predictive model to residualize outcomes in
the experimental data, before using conventional weighting estimators to estimate the PATE.
For example, in our JTPA application we predict earnings or employment across the target
sites (i.e., the “population”), which we use to residualize the outcomes in the experimental
site.

In total, post-residualized weighting has four steps. The first step is to estimate sampling
weights wi which is the same as the conventional weighting approach. In the second step,
we fit a flexible model in the population data to predict the outcome variable Yi using pre-
treatment Xi . We refer to this predictive model fit in the population data as a residualizing
model and formally denote it as g(Xi ): X → R, where X is the support of Xi . In the third
step, we use the estimated residualizing model to predict outcomes Ŷi in the experimental
data which is separate from the population data used to estimate the residualizing model. In
the fourth and final step, we apply the weighted least squares estimator (equation (8)), using
the residuals from this prediction (denoted by êi = Yi − Ŷi) as outcomes (instead of Yi used
in the conventional weighted least squares estimator).

We summarize our proposed approach in Table 1. In the following section, we directly ex-
tend the weighted estimator and the weighted least squares estimator discussed in Section 2.

DEFINITION 1 (Post-residualized Weighted Least Squares Estimator). Given a residual-
izing model estimated as ĝ(·), the post-residualized weighted least squares estimator τ̂ res

wLS for
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TABLE 1
Steps of post-residualized weighting

Post-residualized weighting for the PATE estimation:

Step 1: Estimate sampling weights, wi , for units in the experimental sample.

Step 2: Choose a residualizing model g(Xi ): X → R, where X is the support of Xi . Using the population
data, estimate ĝ(Xi ) that predict the population outcomes using pre-treatment covariates Xi .

Step 3: Predict Ŷi = ĝ(Xi ) for each unit in the experimental data, and compute residual êi = Yi − Ŷi for units
in the experimental sample.

Step 4: Estimate the PATE using residuals êi and estimated sampling weights ŵi .

No covariate adjustment within the experimental data�

See post-residualized weighted estimator τ̂ res
W in equation (10).

With covariate adjustment within the experimental data�

See post-residualized weighted least squares estimator τ̂ res
wLS (Definition 1).

the PATE is defined as

(9) (τ̂ res
wLS, α̂res, γ̂ res) = argmin

τ,αres,γ res

1

n

∑
i∈S

ŵi

(
êi − (τTi + αres + X̃�

i γ res)
)2

,

where êi = Yi − ĝ(Xi) and X̃i are experimental pre-treatment covariates included in the co-
variate adjustment. We allow X̃i to differ from the Xi used to calculate ĝ(Xi ).

In practice, the post-residualized weighted least squares estimator can be estimated by
running a weighted regression, where the estimated residualized values êi is regressed on an
intercept, the treatment indicator Ti and covariates X̃i , and using the sampling weights ŵi as
the weights. The coefficient of the treatment indicator is the post-residualized weighted least
squares estimate for the PATE.

In a special case where no pre-treatment covariates are included, the post-residualized
weighted least squares estimator is equivalent to the following post-residualized weighted
estimator:

(10) τ̂ res
W :=

∑
i∈S ŵiTi êi∑
i∈S ŵiTi

−
∑

i∈S ŵi(1 − Ti)êi∑
i∈S ŵi(1 − Ti)

.

We summarize several key aspects of the post-residualized weighted least squares estimator
here and formally discuss each point in the subsequent sections. First, the identification of the
PATE is obtained under the same assumptions required for existing weighted and weighted
least squares estimators, and we do not make any additional assumptions (Section 3.2). Most
importantly, our proposed estimators are consistent for the PATE, regardless of the choice of
the residualizing model. That is, we do not require the correct specification of the residual-
izing model g(Xi ) to guarantee consistency of the proposed estimators. Therefore, akin with
Rosenbaum (2002) and Sales, Hansen and Rowan (2018), the residualizing model g(Xi) can
be seen as an “algorithmic model” in that the goal is to predict outcomes, rather than substan-
tively explain an underlying probabilistic process.

Second, the proposed post-residualized weighted least squares estimator, τ̂ res
wLS, can achieve

significant improvements in precision over the traditional weighted least squares estimator
(equation (8)) when the residualizing model can predict outcomes in the experiment well
(Section 3.3). We will show in Section 3.3 that, while we maintain consistency regardless,
how much efficiency gain we achieve depends on the predictive performance of the fitted
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residualizing model ĝ(Xi). As such, researchers should, when possible, use not only sim-
ple models, such as ordinary least squares, but also more flexible machine learning models,
such as random forests or other ensemble learning methods (Breiman (2001), van der Laan,
Polley and Hubbard (2007)) as the residualizing models to improve precision of the PATE
estimation.

Finally, we derive a diagnostic measure that researchers can use to determine whether
residualizing will likely lead to precision gains when estimating the PATE (Section 3.4). As
emphasized in the second point above, when the residualizing model can predict outcomes in
the experiment well, we can expect efficiency gains. However, when the residualizing model
fails to predict outcome measures in the experimental data, it is possible for post-residualizing
to increase uncertainty of the PATE estimation. Our diagnostic measure helps researchers to
estimate the expected efficiency gain, thereby deciding whether residualizing is beneficial in
their applications.

REMARK. Our proposed post-residualized weighted least squares estimator is closely
connected to the augmented inverse probability weighted estimators (AIPW) (Robins, Rot-
nitzky and Zhao (1994)) developed for the PATE (Dahabreh et al. (2019)) in that both es-
timators combine weighting and outcome-modeling. The process of estimating weights for
both the post-residualized weighting estimators and AIPW is the same. However, the key dif-
ference between two approaches is that the AIPW estimates the outcome model using only
the experimental data, thereby not exploiting the outcome variable available in the popula-
tion data. In contrast, our post-residualized weighting estimator explicitly uses the outcome
information available in the population data to estimate the residualizing model and improve
precision. Furthermore, post-residualized weighting does not attempt to model both the treat-
ment and control outcomes separately and, therefore, does not have the double robustness
that the AIPW has.

REMARK. Compared to the simpler post-residualized weighted estimator (equation
(10)), there are two advantages to a more general, post-residualized weighted least squares
estimator (equation (9)). First, it can leverage precision gains from pre-treatment covariates
that are measured in the experimental data but not in the population data. That is, X̃i can
include more covariates than Xi . Second, τ̂ res

wLS provides additional robustness over the post-
residualized weighted estimator τ̂ res

W . More specifically, without further covariate adjustment,
residualizing can be sensitive to differences between the population and experimental units
in the covariate-outcome relationships. For example, considering JTPA, if earnings and em-
ployment depend heavily on local economic conditions, and thus the covariate relationships
differ across sites, then residualizing may not provide efficiency gains. As illustrated in Sec-
tion 3.3, when this difference is large, residualizing can result in efficiency loss. However,
by performing covariate adjustment on the residualized outcomes in the experimental data,
we have an opportunity to correct for the difference in the covariate-outcome relationships
between the experimental data and the population data. In other words, the post-residualized
weighted least squares estimator, τ̂ res

wLS, gives researchers two opportunities to combat the
precision loss of weighting: once from using the population data in the residualizing process
and a second from adjusting for covariates in the experimental data.

3.2. Consistency. In this section we show that the post-residualized weighted least
squares estimator is a consistent estimator of the PATE, regardless of the choice of the
residualizing model g(Xi) and pre-treatment covariates X̃i that researchers adjust for in the
weighted least squares estimator. This emphasizes the point that g(Xi ) need not be a correct
specification of the underlying data-generating process but merely a function that predicts
outcomes measured in the population.
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THEOREM 1 (Consistency of Post-residualized Weighted Least Squares Estimators). As-
sume that sampling weights ŵi are consistently estimated and Assumptions 1–3 hold with
pre-treatment covariates Xi . Then the post-residualized weighted least squares estimator that
adjusts for pre-treatment covariates X̃i (equation (9)) is a consistent estimator

τ̂ res
wLS

p→ τ

with any residualizing model g(Xi ) and any pre-treatment covariates X̃i . The post-
residualized weighted estimator (equation (10)) is also consistent, as it is a special case
when no covariate is included.

The proof of Theorem 1 can be found in Supplementary Material Section 1. This property
allows for a large degree of flexibility in building the residualizing model, since consistency
is guaranteed regardless of model specification or performance of g(Xi ). We obtain consis-
tency, even for a misspecified residualizing model g(Xi), because the predicted experimental
outcome Ŷi = ĝ(Xi ) is only a function of the pre-treatment covariates Xi , and thus, with ran-
domized treatments (Assumption 1) its distribution is the same across treatment and control
units on average for any sample size. As such, residualizing preserves the consistency of the
original weighted estimator without requiring any additional assumptions.

A potential concern with covariate adjustment is that performing covariate adjustment
within the experimental data can result in worsened asymptotic precision and invalid mea-
sures of uncertainty (Freedman (2008)). An alternative approach is to include interaction
terms between the treatment indicator and covariates (Lin (2013)). Regardless, because the
proposed post-residualized weighted least squares estimator is an extension of a weighted
least squares estimator, we can compute valid standard errors with the standard Huber–White
sandwich estimator.

While consistency is guaranteed, efficiency gains from residualizing do depend on the
ability of the residualizing model to predict outcome measures in the experimental data. The-
orem 1 allows for researchers to leverage complex, “black box” approaches (such as ensemble
methods) to maximize the predictive accuracy, as interpretability of the residualizing model is
secondary to being able to fit the data well. In the next section, we will formalize the criteria
for variance reduction from residualizing.

3.3. Efficiency gains. The post-residualized weighted estimator allows researchers to in-
clude information from the observational population data about the relationship between the
pre-treatment covariates and the population outcomes into the estimation process. Whether
or not we obtain precision gains, and the magnitude of these precision gains, will depend on
the nature of the residualizing model. In general, the better researchers are able to explain
the outcomes measured in the experiment using the residualizing model, the greater the effi-
ciency gains. For example, as shown in Section 6, we see greater gains from post-residualized
weighting for earnings, where our predictive model performs better, than we do for employ-
ment, which is more difficult to predict with the auxiliary covariates.

To make these gains more explicit, we first define the weighted variance and weighted
covariance as follows:

Varw(Ai) =
∫ 1

π(Xi )2 · (Ai − Ā)2 dF̃ (Xi ,Ai),(11)

Covw(Ai,Bi) =
∫ 1

π(Xi )2 · (Ai − Ā)(Bi − B̄) dF̃ (Xi ,Ai,Bi),(12)

where Ā = EF (Ai) and B̄ = EF (Bi).
For simplicity, we first describe the efficiency gain for the post-residualized weighted es-

timator (equation (10)).
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THEOREM 2 (Efficiency Gain for Post-residualized Weighted Estimators). The differ-
ence between the asymptotic variance of τ̂ res

W and that of τ̂W is

(13)

AVar
F̃
(τ̂W ) − AVar

F̃
(τ̂ res

W )

= − 1

p(1 − p)
Varw(Ŷi) + 2

p
Covw(Yi(1), Ŷi) + 2

1 − p
Covw(Yi(0), Ŷi),

where AVar
F̃
(Z) denotes the scaled asymptotic variance of random variable Z over the sam-

pling distribution F̃ , that is, AVar
F̃
(Z) = limn→∞ Var

F̃
(
√

nZ). p is the probability of being
treated within the experiment, that is, p = Pr

F̃
(Ti = 1).

The proof of Theorem 2 can be found in Supplementary Material Section 1. Theorem 2 de-
composes the efficiency gain from post-residualized weighting into two components: (1) the
variance of the predicted experimental outcomes Varw(Ŷi) and (2) how related the pre-
dicted outcomes are to the actual outcomes in the experimental samples (represented by
Covw(Yi(1), Ŷi) and Covw(Yi(0), Ŷi)). If the covariance between the predicted outcomes and
actual outcomes in the experimental sample is greater than the variance of the predicted out-
comes, we expect precision gains. In other words, the gains to precision from residualizing
depend on how well outcome measures in the experiment are explained by the residualizing
model fitted to the population data.5 As such, researchers should leverage the large amounts
of data available at the population level to apply flexible modeling strategies in order to max-
imize the variation explained by the residualizing model.

More generally, we can formally write the efficiency gain for the post-residualized
weighted least squared estimator (equation (9)) as follows.

THEOREM 3 (Efficiency Gain for Post-residualized Weighted Least Squares Estimators).
The difference between the asymptotic variance of τ̂wLS and that of τ̂ res

wLS is

(14)

AVar
F̃
(τ̂wLS) − AVar

F̃
(τ̂ res

wLS)

= 1

p

{
Varw(Yi(1) − X̃�

i γ∗) − Varw(Yi(1) − ĝ(Xi))
}

+ 1

1 − p

{
Varw(Yi(0) − X̃�

i γ∗) − Varw(Yi(0) − ĝ(Xi ))
}

︸ ︷︷ ︸
(a) Explanatory power of residualizing model over linear regression

+ 2

p
Covw(êi(1), X̃�

i γ res∗ ) + 2

1 − p
Covw(êi(0), X̃�

i γ res∗ ) − 1

p(1 − p)
Varw(X̃�

i γ res∗ )︸ ︷︷ ︸
(b) Remaining variation in residualized outcomes explained by linear regression on X̃i

,

where γ∗ and γ res∗ are the true coefficients6 associated with the pre-treatment covariates,
X̃i defined in the weighted least squares regression (equation (8)), and the post-residualized
weighted least squares regression (equation (9)), respectively.

5We note that the efficiency gain expression does not include uncertainty associated with estimating the resid-
ualizing model. This is because the chosen ĝ(Xi ) is a dimension reducing function of the fixed pre-treatment
covariates.

6We define the true coefficients as the coefficients that would be estimated as the experimental sample size
n → ∞; see Supplementary Material for more information.
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When we include covariate adjustment to the experimental data, the gains to precision
depend on two factors. The first factor, (a), compares the explanatory power of the residu-
alizing model with the linear regression. More specifically, if ĝ(Xi) is able to explain more
variation than the linear combination of X̃i , then we expect the first term to be positive. The
second term, (b), represents the amount of variation in the residualized outcomes that can be
explained by the pre-treatment covariates X̃i .

A natural question is, “Why not directly adjust for covariates within the experimental sam-
ple instead of using a residualizing model?” One advantage to using the post-residualized
weighting over directly adjusting for covariates within the experimental sample arises from
the fact that there is typically a larger amount of data available in the population data (i.e.,
N � n). While researchers could choose to use a flexible model within the experimental
data to perform covariate adjustment, there is a greater restriction with respect to degrees-
of-freedom to what type of model can be fit. The availability of large amounts of population
data can be leveraged in the residualizing process to better estimate covariate-outcome rela-
tionships. Additionally, by using population data to build and tune the residualizing model,
we protect the fidelity of inferences using the experimental data since it is only used for
estimation of the PATE.

In the following subsection, we will describe a diagnostic measure that can help re-
searchers determine whether or not they should expect precision gains from residualizing.

3.4. Diagnostics. As discussed above, while post-residualized weighting stands to
greatly improve precision in estimation of the PATE, this is not guaranteed. To address this
concern, we derive a diagnostic that evaluates when researchers should expect precision gains
from residualizing.

Again to simplify our presentation, we first start with the post-residualized weighted esti-
mator (equation (10)). We can define a pseudo-R2 measure as

(15) R2
0 := 1 − Varw(êi(0))

Varw(Yi(0))
,

where we define êi (t) = Yi(t) − Ŷi for t ∈ {0,1}.
R2

0 can be interpreted as the weighted goodness-of-fit of the residualizing model for the
potential outcomes under control for units in the experiment. Researchers can estimate R2

0
using the estimated residuals across the control units in the experiment. When R2

0 > 0, we
expect an improvement in precision across the control units from residualizing.

More generally, for the post-residualized weighted least squares estimator (equation (9))
we can define R2

0 as

(16) R2
0 = 1 − Varw(êi(0) − X̃�

i γ res∗ )

Varw(Yi(0) − X̃�
i γ∗)

,

where we now include covariate adjustments from weighted least squares regression in our
diagnostic. The êi (0) − X̃�

i γ res∗ are the residuals that arise from regressing the residualized
outcomes under control on the pre-treatment covariates in the weighted regression. Similarly,
the quantity Yi(0) − X̃�

i γ∗ are the residuals from regressing the raw outcomes under control
on the pre-treatment covariates. In this way we are directly comparing the variance of the
outcomes, following covariate adjustment, across the control units. The interpretation of this
value is identical to that of the pseudo-R2 value in the weighted estimator case. It is easy to
see that R2

0 in equation (15) is a special case of R2
0 in equation (16) when X̃i =∅.

In line with Rubin’s “locked box” approach (Rubin (2008)), we do not suggest estimating
the analogous R2

0 among treated units. However, if the variation in the control outcomes is
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greater than the overall treatment effect heterogeneity, then checking if R2
0 is greater or less

than zero is an effective diagnostic for whether or not we expect precision gains from resid-
ualizing. We formalize this in the following corollary, where we write the relative reduction
from residualizing as a function of this proposed R2

0 measure.

COROLLARY 1 (Relative Reduction from Residualizing). With R2
0 defined as in equation

(15), define R2
1 as the analogous weighted goodness-of-fit of the residualizing model for the

potential outcomes under treatment:

R2
1 := 1 − Varw(êi(1) − X̃�

i γ res∗ )

Varw(Yi(1) − X̃�
i γ∗)

= R2
0 − ξ,where ξ = R2

0 − R2
1 .

Furthermore, define the ratio f = p Varw(Yi(0)− X̃�
i γ∗)/(1−p)Varw(Yi(1)− X̃�

i γ∗). Then
the relative reduction in variance from residualizing is given by

Relative Reduction := AVar
F̃
(τ̂wLS) − AVar

F̃
(τ̂ res

wLS)

AVar
F̃
(τ̂wLS)

= R2
0 − 1

1 + f
· ξ.

Corollary 1, proof available in Supplementary Material Section 1, decomposes the over-
all relative reduction in variance of the weighted least squares estimator from residualizing
into two components: (1) our proposed diagnostic measure R2

0 and (2) a factor, represented
by ξ , that measures the difference in prediction error between the experimental control and
experimental treated potential outcomes. If the residualizing model explains similar amounts
of variation across both the treated and control potential outcomes, then R2

1 ≈ R2
0 and ξ ≈ 0.

In that scenario R2
0 will be roughly indicative of the expected relative reduction. When R2

0
takes on a negative value, this is a strong indication that residualizing is unlikely to result in
precision gains, since it is unlikely the prediction error will be significantly lower for treated
units.

To summarize, R2
0 can diagnose when one should expect improvements in precision from

residualizing. When R2
0 takes on negative values, researchers should not proceed with resid-

ualizing, as it is likely to result in precision loss.

4. Extension: Using the predicted outcomes as a covariate. Thus far, we have dis-
cussed residualizing or directly subtracting the predicted outcome values from the outcomes
measured in the experimental sample. An alternative approach is to regress the outcomes
measured in the experimental sample on the predicted outcomes Ŷi from our residualizing
model. In particular, we include Ŷi as a covariate in a weighted linear regression,(

τ̂ cov
W , β̂, α̂

)
= argmin

τ,β,α

1

n

∑
i∈S

ŵi

(
Yi − (τTi + βŶi + α)

)2
.

We can extend this approach to also include pre-treatment covariates,(
τ̂ cov

wLS, β̂, α̂, γ̂
)

= argmin
τ,β,γ,α

1

n

∑
i∈S

ŵi

(
Yi − (τTi + βŶi + α + X̃�

i γ )
)2

.

The residualizing methods we discussed in Section 3 can be seen as special cases of these
methods where we set β = 1.

Residualizing by directly including Ŷi as a covariate in the weighted least squares has
many advantages. The primary advantage is that this approach allows researchers to flexibly
use proxy outcomes measured in the target population. When the outcome of interest is not
measured at the population level or if the outcomes are measured in different ways across the
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experimental sample and the observed population data, researchers can estimate the residu-
alizing model g(Xi) using alternative proxy outcomes Ỹi related to the outcome of interest.
However, use of these proxies can lead to scaling issues that limit the ability of the weighted
and weighted least squares methods for post-residualizing to achieve efficiency gains. We
show how including Ŷi as a covariate addresses these concerns.

As with our post-residualized estimators τ̂ res
W and τ̂ res

wLS discussed in Section 3, both τ̂ cov
W

and τ̂ cov
wLS are consistent estimators of the PATE (Section 4.2). Finally, including the predicted

outcome Ŷi as a covariate protects against efficiency loss, unlike τ̂ res
W and τ̂ res

wLS in the previous
sections. This is true whether researchers rely on a proxy outcome Ỹi or if they build the
residualizing model on Yi .

4.1. Proxy outcomes in the population data. There are many settings in which re-
searchers may rely on a proxy outcome Ỹi . First, an outcome measure used to estimate the
residualizing model in the population data may differ from the outcome measure in the ex-
periment. Second, even when the outcome measure used to estimate the residualizing model
in the population data is, in principle, the same measure as the outcome of interest in the ex-
perimental data, there can be differences between Ỹi and Yi that may arise due to differences
in how the outcomes are measured or operationalized across the experimental sample and the
population or when the potential outcomes depend on context. For example, this might occur
if the population is a mix of both treatment and control conditions with nonrandom treatment
selection.

EXAMPLE (JTPA). Assume that we wish to generalize the impact of JTPA on employ-
ment in an experimental site to a new target site. However, in this target site, instead of
current employment, we only have access to total weeks worked in the past year or whether
an individual is collecting unemployment benefits which differ from the employment indi-
cator collected at the end-point in the experiment. These could serve as proxy measures for
employment when using post-residualized weighting for generalizing the impact of JTPA to
a target site. In Section 6 we use our two primary outcomes, earnings and an employment
indicator, as proxies for one another.

EXAMPLE (Get-Out-the-Vote (GOTV) experiments). Consider Get-Out-the-Vote experi-
ments, again, where we are interested in the causal effect of a randomized GOTV message on
voter turnout which is measured by administrative voter files in the United States (e.g., Gerber
and Green (2000)). Imagine, however, that we do not have administrative data available on
our population, such as for all voters in the United States, but rather we have a nationally
representative survey. For many nationally representative surveys, it is infeasible to link ad-
ministrative individual-level voting history data, due to privacy issues and data constraints; as
such, we do not have access to voter turnout. Instead, surveys often ask voters an “intent-to-
vote” question which can proxy for actual voter turnout. Our proposed method can use this
“intent-to-vote” variable to build a residualizing model.

EXAMPLE (Education experiments). Imagine that researchers are primarily interested in
the causal effect of small class sizes not on standardized outcomes, such as the SAT, but
rather on a curriculum-based test score specific to a state collected during a given academic
year. In this case researchers may not have access to this curriculum-based measure in the
state-level population data but may have access to related standardized testing scores. These
standardized test scores may be used as a proxy to the curriculum-based test score of interest
that is measured in the experimental data when constructing the residualizing model.
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When using proxy outcomes to estimate the residualizing model, the efficiency gain will
be impacted by how similar the proxy outcomes are to the actual outcomes of interest. More
formally, consider the following decomposition of the residuals êi :

(17) êi = Yi − Ỹi︸ ︷︷ ︸
(a)

Difference between
outcomes in experiment

and proxy outcome

+ Ỹi − Ŷi︸ ︷︷ ︸
(b)

Prediction Error
for proxy outcome

,

where we define Ỹi as the proxy outcome. Conceptually, Ỹi represents the proxy outcome,
had it been measured for the experimental data. For example, in the JTPA experiment, Ỹi

could represent the variable for collecting unemployment, had it been measured for the ex-
perimental sample.

Equation (17) decomposes the residual term into two components. The second component
(b) is the model prediction error. This is driven by how well the chosen residualizing model
g(Xi ) fits proxy outcomes measured in the population data. The first component (a) is how
similar the proxy outcomes, measured in the population data, are to the outcome measures
used in the experimental data. If the proxy outcomes differ substantially from the outcomes
measured in the experimental data, while the post-residualized weighted estimators will still
be consistent (see Theorem 1), there may be losses in efficiency from residualizing, regardless
of how much we are able to minimize the prediction error in the second term (b).

4.2. Consistency. Like the previously proposed post-residualized weighted estimators
τ̂ res
W and τ̂ res

wLS, both τ̂ cov
W and τ̂ cov

wLS will be consistent estimators of the PATE. This follows
from the fact that Ŷi = ĝ(Xi ) is just a function of pre-treatment covariates Xi . In this sense
we can think of τ̂ cov

W and τ̂ cov
wLS as extensions of the weighted least squares estimator, where

Ŷi is an additional pre-treatment covariate included in the weighted linear regression. Thus,
as shown in Section 3, both τ̂ cov

W and τ̂ cov
wLS are consistent estimators of the PATE.

4.3. Efficiency gain and diagnostics. There are two advantages to using Ŷi as an ad-
ditional covariate. First, because Ŷi is treated as a covariate in a weighted regression, the
estimated coefficient (i.e., β̂) can capture any potential scaling differences between the proxy
outcomes and the actual outcomes of interest. While the standard post-residualized weighted
estimator can account for additive differences between the proxy outcome and actual out-
come, including Ŷi as a covariate in a weighted regression allows for our method to addi-
tionally account for scale differences between the proxy and actual outcomes. For example,
returning to the Get-Out-the-Vote experiments, intent-to-vote is often measured on a Likert
scale, while voter turnout is simply a binary variable of whether the individual voted or not.
In such a scenario, residualizing directly on Ŷi can lead to efficiency loss, despite the fact that
intent-to-vote is correlated to voter turnout.

Second, treating Ŷi as a covariate protects against precision loss when the proxy outcomes
are significantly different from the outcomes of interest. At worst, Ŷi is unrelated to Yi , and
we expect the coefficient in front of Ŷi to be near zero. When this occurs, we expect the
variance of the post-residualized weighted estimator, when using Ŷi as a covariate, to be
similar to the variance of a conventional estimator that does not include population-level
outcome information. Below we demonstrate this more formally.

COROLLARY 2. The post-residualized weighted estimators using Ŷi as a covariate will
be at least as asymptotically efficient as the standard weighted estimators,

AVar(τ̂W ) − AVar(τ̂ cov
W ) ≥ 0,

AVar(τ̂wLS) − AVar(τ̂ cov
wLS) ≥ 0.
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This result follows from Ding (2021), who shows that the variance of an estimator that ac-
counts for pre-treatment covariates will be asymptotically less than or equal to the variance
of an estimator that does not account for pre-treatment covariates.

To account for whether or not the predicted outcomes sufficiently explain enough of the
variation in the experimental sample, we extend our previously proposed diagnostic measures
to the proxy outcome setting. To do so, we propose using sample splitting across the control
units in the experimental sample. We regress Ŷi on the control outcomes Yi across one subset
of the sample. This allows us to estimate β̂ . Then, using β̂ , we can estimate residuals, ac-
counting for the scaling factor (i.e., Yi − β̂Ŷi), across the held out sample, and calculate the
R̂2

0 and R̂2
0,wLS diagnostics from before. Finally, we conduct cross-fitting, that is, repeating

the same procedure by flipping the role of training and test data and then averaging diagnos-
tics from both sample splits.

4.4. When to worry about external validity. When diagnostic measures indicate that post-
residualized weighting is unsuitable for the data at hand, it is important to understand why.
In particular, equation (17) shows that efficiency loss could occur from: (1) the residualizing
model’s prediction error and (2) the difference between the outcomes in the population and
the outcomes measured in the experimental sample. Low diagnostic values indicate that post-
residualizing methods may not provide efficiency gains; however, it may also be indicative
of contextual differences in the potential outcomes which affect the validity of the PATE
estimate.

The residualizing model’s prediction error, from equation (17)-(b), can be estimated
through cross-validation using the population-level data. Researchers can hold out random
subsets of the population-level data when estimating the residualizing model and calculate
the prediction error across the held out sample. If the cross-validated error is large, there will
likely be little to no efficiency gains from using post-residualized weighting, due to poor pre-
diction, even if the true outcome Yi were used to estimate ĝ. The difference between the out-
comes Yi and the proxy outcome Ỹi , from equation (17)-(a), can be estimated when the proxy
outcome is also measured in the experimental sample. For example, in the Get-Out-the-Vote
experiments, researchers may have voters’ intent-to-vote in the experimental sample. Alter-
natively, in the education experiments researchers could measure both the curriculum-based
test score and the standardized test score in the experimental sample. In JTPA, employment
outcomes may be operationalized differently across sites.

In settings where Ỹi is not measured in the experimental data, researchers can still use the
proposed diagnostic measures to determine if there are concerns about generalizability. For
example, if the cross-validated prediction error is low but the diagnostics indicate that post-
residualized weighting will not improve efficiency, then this indicates that the residualizing
model predicts the population outcomes well but does not predict outcomes measured in the
experiment well. This could be due to two problems. First, if the population outcome is a
proxy measure of the outcome measured in the experimental sample, then it could be that the
measure used in the population data is not a good proxy for the experimental outcome. Alter-
natively, if researchers believe that the experimental and population outcomes are measured
in the same way, then a low or negative R2

0 measure, in conjunction with low cross-validated
prediction error, would indicate that the outcome-covariate relationships in the population
are considerably different from the outcome-covariate relationships in the experimental sam-
ple. In this case there may be limited external validity of the experiment, due to a failure of
the consistency of parallel studies assumption, since the potential outcomes may depend on
context (see Egami and Hartman (2022) for more discussion).
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5. Simulation. We now run a series of simulations to empirically examine the proposed
post-residualizing method. In total, we consider four different data-generating scenarios,
based on the following model for the potential outcomes under control:

Yi(0) = β1X1i + β2X2i + γ1X
2
1i + γ2

√|X2i | + γ3
(
X1i · X2i )

+ βS · (1 − Si) · (α + β3X1i + γ4X1i · X2i ) + εi,

where (X1i ,X2i ) are observed pre-treatment covariates and Si ∈ {0,1} is a binary indicator
variable, taking the value of one when unit i is in the experimental data and taking the value
of zero when unit i is in the population data. βS controls for differences between the experi-
mental sample and population data outcomes, and the γ terms dictate the nonlinearity of the
data-generating processes.

We then define the treatment effect model as follows:

τi = ατ + Xτ,i,

where Xτ,i is an observed pre-treatment covariate that governs treatment effect heterogeneity.
Therefore, the observed outcomes take on the following form: Yi = Yi(0)+τi ·Ti . We provide
additional details, including the sampling model and distributions of observed covariates, in
Supplementary Material Section 2.

The first two scenarios test the method when the outcome measures for both the experi-
mental sample and the population data are drawn from the same underlying data-generating
process to explore a setting where the outcome is measured identically across the experi-
ment and target population (i.e., βS = 0). The third and fourth scenarios use different data-
generating processes to simulate a context where the outcome measure differs between the
experimental sample and the population (i.e., βS �= 0). This represents real-world settings in
which the outcomes in the experimental sample and population are measured differently or
are situated in different contexts, which can result in differences in the outcome-covariate re-
lationships. This setting also mimics the case in which researchers use a proxy outcome. For
each of these settings, we consider a version of the data generating processes that is linear in
the included covariates (γ◦ = 0–i.e., all γ coefficients are set to zero) and a second version
that contains nonlinearities (γ◦ �= 0). Table 2 provides a summary of the different scenarios.

We compare conventional and post-residualized versions of two sets of estimators in each
simulation. We perform post-residualizing in two different ways: the first directly residualizes
the outcomes in the experimental sample by subtracting the predicted outcomes, and the
second treats the predicted outcomes as a covariate in a weighted regression. Therefore, we
compare a total of six different estimators: (1) the weighted estimators τ̂W , τ̂ res

W , τ̂ cov
W , and

(2) weighted least squares (wLS) τ̂wLS, τ res
wLS, and τ̂ cov

wLS. The difference-in-means estimator
(DiM) is also provided as a baseline with no weighting adjustment.

The underlying sampling process is governed by a logit model. At each iteration of the
simulation, we draw both a biased experimental sample and a random sample of a larger

TABLE 2
Summary of different simulation scenarios

Proxy and experimental sample outcomes DGP type

Scenario 1 Identical DGP (βS = 0) Linear (γ◦ = 0)
Scenario 2 Identical DGP (βS = 0) Nonlinear (γ◦ �= 0)
Scenario 3 Different DGP (βS �= 0) Linear (γ◦ = 0)
Scenario 4 Different DGP (βS �= 0) Nonlinear (γ◦ �= 0)
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FIG. 2. Summary of estimates across 1000 simulations for Scenarios 1 and 2 in which the experimental sam-
ple and population outcomes are drawn from the same data-generating process. The dashed line represents the
super-population PATE.

target population as the population data. The population data is used to estimate the resid-
ualizing model and sampling weights. We use entropy balancing to estimate the sampling
weights ŵi for each simulation. Our residualizing model is a regression that contains all
the pairwise interactions of the included covariates. The weighted least squares regression
includes covariates additively without any interactions.7 Our results follow:

Overall, we find that when the underlying outcome model is complex and contains nonlin-
ear terms, our post-residualizing method exhibits large precision gains compared to conven-
tional methods. When there is no difference between the population-level outcomes and the
outcomes in the experimental sample, seen in Figure 2, direct residualizing and including Ŷi

as a covariate performs identically.

Scenario 1. When we consider a linear DGP, residualizing results in substantial precision
gains for the weighted estimator. However, for the weighted least squares estimator, residual-
izing does not result in precision gains, because the covariate adjustment taking place in the
weighted regression already includes the linear terms in the data-generating process, and thus,
the residualizing step does not model anything in the outcomes that is not already accounted
for in the wLS regression.

Scenario 2. When we include nonlinear terms into the data-generating process, residual-
izing results in precision gains for all of the estimators, because the residualizing model is
able to account for some of the nonlinearities that the wLS regression does not account for.
It is worth noting that the estimated residualizing model is not a correct specification of the
underlying outcome model for the population data. However, because we have included the
pairwise interactions between the covariates, the residualizing model is able to significantly
reduce the variance for both estimators, even without accounting for all of the nonlinear terms
in the underlying data-generating process.

7It is possible, in practice, to include nonlinear transformation of pre-treatment covariates in the regression
adjustment step. However, we have omitted it to illustrate the efficiency gains that can be obtained from accounting
for nonlinearities through the residualizing step. This mimics how, in practice, we are able to fit more complex
models to more data.
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FIG. 3. Plot of RMSE of the different estimators for Scenarios 3 and 4, in which the experimental sample and
population outcomes are drawn from different data generating processes. βS controls for how different the two
processes are (i.e., the larger |βS | is, the larger the difference between the two processes). The standard estimators
are presented in black and the residualized estimators in gray and light gray. We label all the points for which the
diagnostic measure estimates a loss (×) or gain (•) in efficiency from residualizing more than 50% of the time in
the 1000 iterations.

Scenarios 3 and 4. Next, we consider a difference in the underlying data-generating process
between the experimental and population outcomes, presented in Figure 3. We operational-
ize this by including an interaction between treatment, the sampling indicator, and covariates.
The degree to which the two processes differ is varied across different simulations using a sin-
gle parameter, βS . When the difference is relatively small (i.e., small |βS |), the two methods
used to residualize the experimental sample outcomes perform identically. This is evident
by a lower RMSE when |βS | < 2 for the post-residualized weighted estimators. When the
difference in the DGP are large (i.e., |βS | > 2), residualizing by directly subtracting the out-
comes from the predicted outcomes results in precision loss, evident by a larger RMSE for the
post-residualized weighted estimator τ̂ res

W and for the post-residualized weighted least square
estimator τ̂ res

wLS when the true DGP is nonlinear. However, treating the predicted outcomes
as a covariate in a weighted linear regression τ̂ cov

W and τ̂ cov
wLS allows for precision gain, even

in these settings. We see that, at worst, the covariate-based residualizing approach performs
equivalently to the conventional estimators.

It is important to highlight that, regardless of the degree of divergence between the popula-
tion and experimental sample DGP’s, post-residualized weighting is able to maintain nominal
coverage. Furthermore, our proposed diagnostic measures adequately capture when we ex-
pect to gain or lose precision from residualizing. We provide coverage results and a summary
of the diagnostic performance in Supplementary Material Section 2.

6. Empirical evaluation: Job Training Partnership Act. To evaluate and benchmark
how our proposed post-residualizing method may work in practice, we now turn to an empir-
ical application. Recall that, while the original study evaluated the overall impact of JTPA,
our focus is on generalizing the effect of each site individually to the other 15 sites. More
specifically, in our leave-one-out analysis for each site we define the PATE as the average
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treatment effect among units in the remaining 15 sites. We then generalize the experimental
results from one site to the population defined by the pooled remaining sites. This allows
us to validate our method’s performance by comparing our PATE estimators to the pooled
experimental benchmark in the remaining sites. We evaluate generalizability for two out-
comes: employment status (binary outcome) and total earnings (zero-inflated, continuous
outcome).

6.1. Post-residualized Weighting.

6.1.1. Residualizing model. We include baseline covariates measured at the interview
stage of the JTPA study. The covariates include measures of age, previous earnings, marital
status, household composition, public assistance history, education and employment history,
access to transportation, and ethnicity. More details about the pre-treatment covariates can be
found in Supplementary Material Section 3.

We construct our residualizing model using an ensemble method, the SuperLearner (van
der Laan, Polley and Hubbard (2007)). The ensemble model contains the random forest,
with varying hyperparameters, and the LASSO, with hyperparameters chosen using cross
validation. This allows us to capture nonlinearities in the data through the random forest as
well as linear relationships using the LASSO (van der Laan, Polley and Hubbard (2007)).
We build separate models for the probability of employment and total earnings. We fit our
residualizing model on the control units from the target population. Details can be found in
Supplementary Material Section 3.

6.1.2. Estimators. We estimate the PATE using two different estimators: the weighted
estimator and the weighted least squares estimator (wLS). For each estimator we consider
the conventional estimators (τ̂W and τ̂wLS), the post-residualized estimators directly subtract-
ing the predicted outcomes from the outcomes in the experimental sample (τ̂ res

W and τ̂ res
wLS),

and the post-residualized estimators using the predicted outcomes as a covariate (τ̂ cov
W and

τ̂ cov
wLS). Sampling weights are estimated using entropy balancing in which we match main

margins for age, education, previous earnings, race, and marital status (Hainmueller (2012)).
Our weighted least squares (wLS) estimators include age, education level, and marital sta-
tus as controls. Standard errors are estimated using heteroskedastic-consistent standard errors
(HC2).

6.1.3. Diagnostics. For each site we compute the pseudo-R2 diagnostics. This can be
done directly for the post-residualized weighted and weighted least squares estimators. When
treating Ŷi as a covariate, we use sample splitting to estimate the pseudo-R2 values. Because
some of the experimental sites comprise relative few units (i.e., the experimental site of Mon-
tana contains only 38 units total), we perform repeated sample splitting, taking the average
of the diagnostic across the repeated splits (Chernozhukov et al. (2018), Jacob (2020)).

6.2. Results.

6.2.1. Bias. Because the conventional estimators and our proposed approach rely on the
same identification assumptions, we first want to verify that the overall bias in the PATE
estimation is not affected by the post-residualized weighting step. Across all 16 sites, the
point estimates from post-residualized weighting do not change substantially from standard
estimation approaches. Even in experimental sites in which it may not be advantageous to per-
form post-residualized weighting for efficiency gains, point estimates from post-residualized
weighting methods are close to those from the conventional weighting estimators. We report
the mean absolute error for all 16 sites in Supplementary Material Table A7.
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6.2.2. Diagnostics. To evaluate whether the post-residualized weighting estimators pro-
vide efficiency gains over conventional approaches, we estimate our diagnostics. Supplemen-
tary Material Table A9 summarizes the performance of the diagnostic measures across all 16
sites for both earnings and employment.

On average, we see that the proposed diagnostic measures are able to adequately capture
when researchers should expect precision gains from residualizing. The R̂2

0 diagnostic has a
high true positive rate for both directly residualizing and using Ŷi as a covariate. As such,
when the diagnostic measures indicate that researchers should residualize, residualizing re-
sults in precision gains. In the case when we are directly residualizing, the diagnostic measure
also has a relatively high true negative rate which implies that, when R̂2

0 < 0, there is a loss
in precision from directly residualizing. In the case of including Ŷi as a covariate, there is a
greater false negative rate, as the diagnostic tends to be more conservative in this setting. This
is especially noticeable when employment is the outcome. Many of the false negatives here
correspond to estimated R̂2

0 values that are negative but very close to zero.

6.2.3. Efficiency gain. Results on the efficiency gains to post-residualized weighting are
summarized in Table 3 and graphically displayed in Figure 4. Restricting our attention to
the sites for which the R̂2

0 values are greater than zero, there is a large reduction in variance
overall from residualizing. When directly residualizing, for earnings, residualizing results
in a 21% reduction in estimated variance for the weighted estimator and a 12% reduction
for the weighted least squares estimator. For employment, directly residualizing leads to a
10% reduction in estimated variance for the weighted estimator and a 5% reduction for the
weighted least squares estimator.

When using Ŷi as a covariate, we see that including the predicted outcomes as a covariate
results in a 25% reduction in variance for the weighted estimator and 16% reduction for
weighted least squares when earnings is the outcome. For employment, adjusting for the
predicted outcomes results in a 9% reduction in variance for the weighted estimator and a 4%
reduction for the weighted least squares.

There are several takeaways to highlight. First, we see that directly residualizing the out-
comes can result in significant precision gain. In particular, the reduction in variance in the
post-residualized weighted least squares demonstrates the advantage residualizing has over

TABLE 3
Summary of gains to post-residualized weighting. Columns 1 and 4 give the number of sites for which the

diagnostic measure indicates gains to post-residualized weighting. The average standard error among selected
sites are presented for the conventional estimators (columns 2 and 5) and post-residualized estimators (columns

3 and 6)

Summary of standard errors across experimental sites subset by diagnostic

Earnings Employment

Number
of sites

Conventional Post-
resid.

weighting

Number
of sites

Conventional Post-
resid.

weighting

Weighted
Direct Residualizing 10 2.42 2.13 11 8.33 7.81
Ŷi as Covariate 7 2.17 1.86 1 5.58 5.01

Weighted Least Squares
Direct Residualizing 12 2.71 2.56 11 7.88 7.64
Ŷi as Covariate 7 1.87 1.71 1 5.56 5.45
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FIG. 4. Reduction in variance from using post-residualized weighting. We calculate the variance of the estima-
tors, relative to the variance of the difference-in-means (DiM) estimator. We can interpret the y-axis as the amount
of variance inflation that is incurred from generalization and see that using the proposed method of incorporating
population data can allow us to offset some of the precision loss incurred from reweighting. We see that, when
using the proposed diagnostic measure, post-residualized weighting results in substantial precision gains across
all four estimators for identified sites.

just using regression adjustment. Second, the larger reduction in variance from using Ŷi as a
covariate underscores the value of being able to capture the scaled relationships between the
outcomes in the population data and in the experimental sample.

Figure 4 shows the relative variance of the PATE estimators to the unweighted SATE. It
is well known that PATE estimators typically have higher variance than the SATE (Miratrix
et al. (2018)); however, we see that, with the post-residualized method, some of the precision
loss incurred from the weighted PATE estimators can be offset. Table 3 provides a summary
of the standard errors of the PATE estimators, relative to the difference-in-means estimators.

In the left panel of Figure 4, we also report the results when pooling all 16 sites together,
which represents the setting in which researchers do not use the diagnostic and naively per-
form post-residualized weighting across all settings. We still generally see some improve-
ments in precision from using post-residualized weighting. However, the improvements are
much smaller than in the setting in which we subset to sites using the diagnostic measure.
As such, we recommend that, when possible, researchers should use the proposed diagnostic
measures.

7. Conclusion. In this paper we introduce post-residualized weighting as a method for
mitigating the precision cost of generalizing experiments to larger populations. Existing es-
timators for population effects typically have high variance, especially if some sampling
weights are extreme (Miratrix et al. (2018)), making it difficult for policymakers and prac-
titioners to draw conclusions about the impact of treatment in the target population. For ex-
ample, in our stylized example a single site from the JTPA might not be representative of
the full experiment, so a generalized estimate based on it would potentially be too lacking in
precision to inform any policy decision. Our precision gains come from leveraging a valuable
type of data that has been typically unused in the generalizability literature so far: outcome
data measured in the target population.

To assess the benefits of our approach in practice, we reevaluate the impact of the Job
Training Partnership Act (JTPA), using the multisite nature of the experiment to benchmark
the performance of our estimators, relative to common methods using a within study compar-
ison approach. We evaluate two outcomes, employment and earnings. We find that the post-
residualized methods result in a 5–25% average reduction in variance and that confidence
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intervals maintain nominal coverage. We achieve the most significant gains from including
the predicted outcomes as a covariate, underscoring the value of this method when scaling
issues may be present in the relationship between the outcomes in the population data and
in the experimental sample. Finally, our diagnostic measures accurately capture when the
post-residualized estimators result in precision gains in estimation of the PATE.

In short, our proposed method first builds a flexible model using population outcome and
covariate data which is then used to residualize the experimental outcome data. We show
that post-residualized weighting estimators, which rely on residualized outcomes, are consis-
tent for the PATE under the same identifying assumptions as current methods. However, by
utilizing residualized outcomes, the post-residualized weighting estimators can obtain large
precision gains over conventional approaches. We propose three classes of post-residualized
weighting estimators: a weighting estimator using the residualized experimental outcomes,
a weighted least squares estimator based on the residualized experimental outcomes, and an
extension of weighted least squares in which the predicted values of the residualizing model
are included as a covariate.

Our proposed framework has many advantages. As discussed in Section 3.1, the residu-
alizing model, g(Xi ), is an “algorithmic model” that merely needs to adequately predict the
outcomes measured in the experiment but does not need to be correctly specified. This al-
lows researchers a great deal of flexibility in constructing it. In Section 4 we discuss how
researchers can leverage proxy outcomes that are correlated with, but different from, the out-
come measured in the experimental setting. Finally, we provide diagnostic measures, based
on the outcomes measured among experimental controls, that allow researchers to determine
whether post-residualized weighting will likely improve precision in estimating the PATE.

We evaluate our three post-residualized estimators through simulation studies and an em-
pirical application. Our simulations and JTPA application show significant precision gains
from post-residualized weighting and confirm the performance of the diagnostic measure to
differentiate when researchers should expect precision gains from post-residualized weight-
ing. We also find that including the predicted outcomes as a covariate ensures that post-
residualized weighting does not hurt precision.
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