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SUPPLEMENTARY MATERIAL

1. Proofs and Derivations.

1.1. Derivation of Variance Terms. Consider a countably infinite population of (Xi, Yi(t))∼
F , where t ∈ {0,1}, with density dF (Xi, Yi(t)). This is our target population. We de-
fine the sampling distribution for the experimental data to be (Xi, Yi(t)) ∼ F̃ with density
dF̃ (Xi, Yi(t)). Because we consider settings where the selection into the experiment from
the target population is biased, F ̸= F̃ . Let S be the set of all indices for all units sampled
in the experimental sample. As we can consider the treatment and control groups to be inde-
pendent samples from an infinite population, we will focus below on one potential outcome
Yi(t).

We defined a relative density in equation (6) as follows.

π(Xi) =
dF̃ (Xi)

dF (Xi)
.

over the support of F , where dF (Xi)> 0. The π(Xi) is our infinite analog to the sampling
propensity score. It scales our distribution. We further assume that π(Xi) > 0 (this is an
overlap assumption, saying our realized sampling distribution is not missing parts of the un-
derlying distribution). π(Xi) captures the relative density of our realized distribution to the
real population. Smaller π(Xi) correspond to areas where there is a lot more in the target
population than in our sample. Larger π(Xi) are where we are over-sampling.

We assume known weights for any unit, dependent on Xi, with wi = κ/π(Xi) (the κ is a
fixed constant allowing our weights to be normalized on some arbitrary scale).

For the remainder of the Supplementary Materials, the distribution over which a quantity
is computed will be denoted by subscript. For example, the expectation over the realized sam-
pling distribution will be written as EF̃ (·), while the expectation over the target population
will be written as EF (·).

LEMMA 1 (Variance of a Hájek estimator). Define µ̂ as a Hájek estimator:

µ̂t =

∑
i∈S wiYi(t)∑

i∈S wi
,

where consistent with before, wi = κ/π(Xi), and (Xi, Yi(t))∼ F̃ . The approximate asymp-
totic variance of a Hájek estimator is:

AVarF̃ (µ̂t)≈
∫

1

π(Xi)2
(Yi(t)− µt)

2dF̃ (Xi, Yi(t)),
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where the asymptotic variance is being taken with respect to the realized sampling distribu-
tion, and µt = EF (Yi(t)) (i.e., the expected value of Yi(t) over the target population).

PROOF. To begin, we write the Hájek estimator as a ratio estimator of the following form:

µ̂t =

∑
i∈S wiYi(t)∑

i∈S wi

=
1
n

∑
i∈S wiYi(t)

1
n

∑
i∈S wi

where we define n to be the sample size, i.e., n= |S|.
We then define Â= 1

n

∑
i∈S wiYi(t) and B̂ = 1

n

∑
i∈S wi for notational simplicity. If we

define A= EF̃ (Â), A= κµt. Similarly, if we define B = EF̃ (B̂), B = κ.
To derive the variance expression, we will use the delta method below for a ratio, i.e., a
function h(a, b) = a/b. For this ratio, we have

d

da
h(a, b) =

1

b

d

db
h(a, b) =− a

b2
.

Therefore, using the Delta Method for a ratio,

µ̂t =
1
n

∑
i∈S wiYi(t)

1
n

∑
i∈S wi

=
Â

B̂

≈ A

B
+

1

B
(Â−A)− A

B2
(B̂ −B)

=
A

B
− A

B
+

A

B
+

1

B
Â− A

B2
B̂

= µt +
1

κ

1

n

∑
i∈S

wiYi(t)−
µt

κ

1

n

∑
i∈S

wi

= µt +
1

nκ

∑
i∈S

wi(Yi(t)− µt)

where the first and second equalities follow from the definition of µ̂t and (Â, B̂), the third
from the delta method, the fourth from simple algebra, the fifth from the definition of (A,B),
and the sixth from re-arrangement of the terms.
Finally,

VarF̃ (µ̂t) = VarF̃ (µ̂t − µt)(A1)

≈ 1

n2κ2
·VarF̃

(∑
i∈S

wi(Yi(t)− µt)

)

=
1

n2κ2
n

∫
κ2

π(Xi)2
(Yi(t)− µt)

2dF̃ (Xi, Yi(t))

=
1

n

∫
1

π(Xi)2
(Yi(t)− µt)

2dF̃ (Xi, Yi(t))(A2)

As such, AVarF̃ (µ̂t) = limn→∞Var(
√
nµ̂t) =

∫
1

π(Xi)2
(Yi(t)− µt)

2dF̃ (Xi, Yi(t)).
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LEMMA 2 (Weighted Variance). Define the weighted variance and the weighted covari-
ance as:

Varw(Ai) =

∫
1

π(Xi)2
(Ai − Ā)2dF̃ (Xi,Ai)

Covw(Ai,Bi) =

∫
1

π(Xi)2
(Ai − Ā)(Bi − B̄)dF̃ (Xi,Ai,Bi)

Under this definition, common variance and covariance properties apply:

Varw(Ai +Bi) = Varw(Ai) +Varw(Bi) + 2Covw(Ai,Bi)

Covw(Ai +Bi,Ci) = Covw(Ai,Ci) +Covw(Bi,Ci)

PROOF.

Varw(Ai +Bi) =

∫
1

π(Xi)2
(
Ai +Bi − (Ā+ B̄)

)2
dF̃ (Xi,Ai,Bi)

=

∫
1

π(Xi)2
(
(Ai − Ā)2 + (Bi − B̄)2 + 2(Ai − Ā)(Bi − B̄)

)
dF̃ (Xi,Ai,Bi)

=

∫
1

π(Xi)2
(Ai − Ā)2dF̃ (Xi,Ai,Bi) +

∫
1

π(Xi)2
(Bi − B̄)2dF̃ (Xi,Ai,Bi)+

2

∫
1

π(Xi)2
(Ai − Ā)(Bi − B̄)dF̃ (Xi,Ai,Bi)

=

∫
1

π(Xi)2
(Ai − Ā)2dF̃ (Xi,Ai) +

∫
1

π(Xi)2
(Bi − B̄)2dF̃ (Xi,Bi)+

2

∫
1

π(Xi)2
(Ai − Ā)(Bi − B̄)dF̃ (Xi,Ai,Bi)

=Varw(Ai) +Varw(Bi) + 2Covw(Ai,Bi)

Covw(Ai +Bi,Ci)

=

∫
1

π(Xi)2
(
Ai +Bi − (Ā+ B̄)

) (
Ci − C̄

)
dF̃ (Xi,Ai,Bi,Ci)

=

∫
1

π(Xi)2
(
(Ai − Ā)(Bi − B̄)

) (
Ci − C̄

)
dF̃ (Xi,Ai,Bi,Ci)

=

∫
1

π(Xi)2
(
(Ai − Ā)(Ci − C̄) + (Bi − B̄)(Ci − C̄)

)
dF̃ (Xi,Ai,Bi,Ci)

=

∫
1

π(Xi)2
(Ai − Ā)(Ci − C̄)dF̃ (Xi,Ai,Bi,Ci) +

∫
1

π(Xi)2
(Bi − B̄)(Ci − C̄)dF̃ (Xi,Ai,Bi,Ci)

=

∫
1

π(Xi)2
(Ai − Ā)(Ci − C̄)dF̃ (Xi,Ai,Ci) +

∫
1

π(Xi)2
(Bi − B̄)(Ci − C̄)dF̃ (Xi,Bi,Ci)

=Covw(Ai,Ci) +Covw(Bi,Ci)
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LEMMA 3 (Asymptotic Variance of a Weighted Estimator).
The asymptotic variance of a Hájek-style weighted estimator is:

AVarF̃ (τ̂W ) = AVarF̃ (µ̂1) +AVarF̃ (µ̂0)

≈ 1

p

∫
1

π(Xi)2
(Yi(1)− µ1)

2dF̃ (Xi, Yi(1)) +
1

1− p

∫
1

π(Xi)2
(Yi(0)− µ0)

2dF̃ (Xi, Yi(0))

=
1

p
Varw(Yi(1)) +

1

1− p
Varw(Yi(0)),

where Varw(·) is defined in equation (9). p is the probability of treatment assignment, i.e.,
p=PrF̃ (Ti = 1). µ1 = EF (Yi(1)) and µ0 = EF (Yi(0)).

PROOF. Because we are sampling from an infinite super-population, the treatment and
control groups can be treated as two separate samples from the infinite super-population. We
directly apply Lemma 1 to arrive at the final result.

LEMMA 4 (Asymptotic Variance of Weighted Least Squares Estimator).
The asymptotic variance of a weighted least squares estimator is:

AVar(τ̂wLS) =
1

p
Varw(Yi(1)− X̃⊤

i γ∗) +
1

1− p
Varw(Yi(0)− X̃⊤

i γ∗),

where γ∗ is the vector of true coefficients associated with the pretreatment covariates X̃i

defined as:

(A3) (τwLS , α∗, γ∗) = argmin
τ,α,γ

EF̃

{
ŵi

(
Yi − (τTi + α+ X̃⊤

i γ)
)2}

PROOF. To begin, analogous with Lin (2013) (Lemma 6), the weighted least squares esti-
mator can be written as:
(A4)

τ̂wLS =
1∑

i∈S wiTi

∑
i∈S

wiTi(Yi − X̃⊤
i γ̂)−

1∑
i∈S wi(1− Ti)

∑
i∈S

wi(1− Ti)(Yi − X̃⊤
i γ̂)

Akin with Ding (2021), we define δX as:

δX =
1∑

i∈S wiTi

∑
i∈S

wiTiX̃
⊤
i − 1∑

i∈S wi(1− Ti)

∑
i∈S

wi(1− Ti)X̃
⊤
i

δX represents any residual imbalance between the treatment and control groups in the
weighted pre-treatment covariates. We can re-write Equation (A4) as:

τ̂wLS =
1∑

i∈S wiTi

∑
i∈S

wiTi(Yi − X̃⊤
i γ̂)−

1∑
i∈S wi(1− Ti)

∑
i∈S

wi(1− Ti)(Yi − X̃⊤
i γ̂)

=
1∑

i∈S wiTi

∑
i∈S

wiTi(Yi(1)− X̃⊤
i γ̂)−

1∑
i∈S wi(1− Ti)

∑
i∈S

wi(1− Ti)(Yi(0)− X̃⊤
i γ̂)

=
1∑

i∈S wiTi

∑
i∈S

wiTi(Yi(1)− X̃⊤
i γ∗ + X̃⊤

i γ∗ − X̃⊤
i γ̂)−
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1∑
i∈S wi(1− Ti)

∑
i∈S

wi(1− Ti)(Yi(0)− X̃⊤
i γ∗ + X̃⊤

i γ∗ − X̃⊤
i γ̂)

=
1∑

i∈S wiTi

∑
i∈S

(
wiTi(Yi(1)− X̃⊤

i γ∗) +wiTiX̃
⊤
i (γ∗ − γ̂)

)
−

1∑
i∈S wi(1− Ti)

∑
i∈S

(
wi(1− Ti)(Yi(0)− X̃⊤

i γ∗) +wi(1− Ti)X̃
⊤
i (γ∗ − γ̂)

)
=

1∑
i∈S wiTi

∑
i∈S

wiTi(Yi(1)− X̃⊤
i γ∗)−

1∑
i∈S wi(1− Ti)

∑
i∈S

wi(1− Ti)(Yi(0)− X̃⊤
i γ∗)︸ ︷︷ ︸

:=τ̂∗
wLS

+

1∑
i∈S wiTi

∑
i∈S

wiTiX̃
⊤
i (γ∗ − γ̂)− 1∑

i∈S wi(1− Ti)

∑
i∈S

wi(1− Ti)X̃
⊤
i (γ∗ − γ̂)︸ ︷︷ ︸

=δX(γ∗−γ̂)

=τ̂∗wLS + δX(γ∗ − γ̂),

where τ̂∗wLS represents the potential outcomes, adjusted for the pre-treatment covariates using
the true coefficients γ∗.

Under standard regularity conditions for least squares, γ∗− γ̂ = op(1) (White, 1982). Fur-
thermore,

√
nδX =Op(1):

lim
n→∞

VarF̃ (δX) = lim
n→∞

(
1

n1
Varw(X̃i) +

1

n0
Varw(X̃i)

)
= lim

n→∞

1

n
·
(
1

p
+

1

1− p

)
Varw(X̃i)

= lim
n→∞

1

n
· 1

p(1− p)
Varw(X̃i)

Assuming Varw(X̃i) is finite, δX =Op(
√
n
−1

) =⇒
√
nδX =Op(1).

Therefore, as n→∞:
√
n(τ̂wLS − τ) =

√
n(τ̂∗wLS − τ) +

√
nδX(γ∗ − γ̂)︸ ︷︷ ︸

p→0

d→N(0,Var(τ̂∗wLS)),

where VarF̃ (τ̂
∗
wLS)≈

1
pVarw(Yi(1)−X̃⊤

i γ∗)+
1

1−pVarw(Yi(0)−X̃⊤
i γ∗) (this result follows

from applying Lemma 1 on the adjusted potential outcomes).

1.2. Proof of Theorem 1.

Suppose Assumption 2 holds with Xi, the Post-Residualized Weighted Least Squares Es-
timator is a consistent estimator for the PATE:

τ̂ reswLS
p→ τ
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PROOF. To begin, we can write τ̂ reswLS as the above estimator on the residuals of the initial
population regression:

τ̂ reswLS =
1

(
∑

i∈S wiTi)

(∑
i∈S

wiTi(êi −Xiγ̂
res)

)
−

(
1

(
∑

i∈S wi(1− Ti))

∑
i∈S

wi(1− Ti)(êi −Xiγ̂
res)

)

=

∑
i∈S wiTiêi∑
i∈S wiTi

−
∑

i∈S wi(1− Ti)êi∑
i∈S wi(1− Ti)︸ ︷︷ ︸

=τ̂res
W

−
(∑

i∈S wiTiXiγ̂
res∑

i∈S wiTi
−
∑

i∈S wi(1− Ti)Xiγ̂
res∑

i∈S wi(1− Ti)

)
︸ ︷︷ ︸

(∗)

,

where γ̂res represents the estimated coefficients for the covariates Xi in the weighted re-
gression run on the residualized outcomes êi. Note that the above represents two distinct
regression steps: êi is the result of the first population regression. γ̂res is estimated for the
covariates Xi from the second regression using the residualized sample outcomes, êi.

We begin by showing that τ̂ resW

p→ τ . We will begin by the proof by showing that τ̂ resW can
be written as the difference between τ̂W , and a weighted estimator computed over the fitted
values Ŷi, which we will define as τ̂Ŷ . Following the generalization literature, we treat the
weights as known, as well as the observed sampled population:

τ̂ resW =

∑
i∈S wiTi · êi∑
i∈S wiTi

−
∑

i∈S wi(1− Ti) · êi∑
i∈S wi(1− Ti)

=

∑
i∈S wiTi · (Yi − Ŷi)∑

i∈S wiTi
−
∑

i∈S wi(1− Ti) · (Yi − Ŷi)∑
i∈S wi(1− Ti)

=

∑
i∈S wiTi · Yi∑

i∈S wiTi
−
∑

i∈S wi(1− Ti) · Yi∑
i∈S wi(1− Ti)︸ ︷︷ ︸

=τ̂W

−

(∑
i∈S wiTi · Ŷi∑

i∈S wiTi
−
∑

i∈S wi(1− Ti) · Ŷi∑
i∈S wi(1− Ti)

)
︸ ︷︷ ︸

=τ̂Ŷ

=τ̂W − τ̂Ŷ

We will begin by showing that τ̂W
p→ τ . To begin:

τ̂W =

∑
i∈S wiTi · Yi∑

i∈S wiTi
−
∑

i∈S wi(1− Ti) · Yi∑
i∈S wi(1− Ti)

By Law of Large Numbers and the Continuous Mapping Theorem:

τ̂W
p→

EF̃ (wiTiYi)

EF̃ (wiTi)︸ ︷︷ ︸
(1)

−
EF̃ (wi(1− Ti)Yi)

EF̃ (wi(1− Ti))︸ ︷︷ ︸
(2)

We will now show that the first term (i.e., (1)) is equal to EF (Yi(1)). We first evaluate the
expectation in the denominator.

EF̃ (wiTi) =
n1

n
EF̃ (wi)

=
n1

n
EF̃

(
κ

π(Xi)

)



LEVERAGING POPULATION OUTCOMES TO IMPROVE GENERALIZATIONS 7

=
n1

n
· κ
∫

1

π(Xi)
dF̃ (Xi)

=
n1

n
· κ
∫

1

π(Xi)
π(Xi)dF (Xi)︸ ︷︷ ︸
=1

=
n1

n
· κ

For the numerator:

EF̃ (wiTiYi) = EF̃ (wiTiYi(1))

=
n1

n
EF̃ (wiYi(1))

=
n1

n
EF̃

(
κ

π(Xi)
Yi(1)

)
=

n1

n
· κEF̃

(
1

π(Xi)
Yi(1)

)
=

n1

n
· κ
∫

Yi(1)

π(Xi)
dF̃ (Xi, Yi(1))

=
n1

n
· κ
∫

Yi(1)

π(Xi)
· π(Xi)dF (Xi, Yi(1))

=
n1

n
· κ
∫

Yi(1)dF (Xi, Yi(1))

=
n1

n
κ ·EF (Yi(1))

Therefore, re-writing (1):

EF̃ (wiTiYi)

EF̃ (wiTi)
=

pκ ·EF (Yi(1))

p · κ

= EF (Yi(1))

Similarly, we can show that the second term, EF̃ (wi(1− Ti)Yi)/EF̃ (wi(1− Ti)), is equal to
EF (Yi(0)). Therefore:

EF̃ (τ̂W )
p→ EF (Yi(1))−EF (Yi(0))

= τ

Now we will show that τ̂Ŷ
p→ 0. Once again, applying Law of Large Numbers and the

Continuous Mapping Theorem:

τ̂Ŷ =

∑
i∈S wiTiŶi∑
i∈S wiTi

−
∑

i∈S wi(1− Ti)Ŷi∑
i∈S wi(1− Ti)

p→
EF̃ (wiTiŶi)

EF̃ (wiTi)
−

EF̃ (wi(1− Ti)Ŷi)

EF̃ (wi(1− Ti))

=
p ·EF̃ (wiŶi)

pEF̃ (wi)
−

(1− p) ·EF̃ (wiŶi)

(1− p)EF̃ (wi)
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=
EF̃ (wiŶi)

EF̃ (wi)
−

EF̃ (wiŶi)

EF̃ (wi)

= 0

where the third line follows from the fact that treatment assignment is randomized and inde-
pendent of weights. Therefore, by the Continuous Mapping Theorem, τ̂ resW

p→ τ .

Now looking just at the (∗) term:∑
i∈S wiTiXiγ̂

res∑
i∈S wiTi

−
∑

i∈S wi(1− Ti)Xiγ̂
res∑

i∈S wi(1− Ti)
=

(∑
i∈S wiTiXi∑
i∈S wiTi

−
∑

i∈S wi(1− Ti)Xi∑
i∈S wi(1− Ti)

)
γ̂res

Under standard regularity conditions for least squares, γ̂res converges to γres∗ . Furthermore,
using Law of Large Numbers and the Continuous Mapping Theorem:∑

i∈S wiTiXi∑
i∈S wiTi

−
∑

i∈S wi(1− Ti)Xi∑
i∈S wi(1− Ti)

p→
EF̃ (wiTiXi)

EF̃ (wiTi)
−

EF̃ (wi(1− Ti)Xi)

EF̃ (wi(1− Ti))

=
EF̃ (wiXi)

EF̃ (wi)
−

EF̃ (wiXi)

EF̃ (wi)

= 0

As such, we see that the term in (∗) will converge in probability to zero. Therefore, τ̂ reswLS

p→
τ .

1.3. Proof of Theorem 2.

The difference between the asymptotic variance of τ̂ resW and the asymptotic variance of τ̂W
is:

AVarF̃ (τ̂W )−AVarF̃ (τ̂
res
W )

=− 1

p(1− p)
Varw(Ŷi) +

2

p
Covw(Yi(1), Ŷi) +

2

1− p
Covw(Yi(0), Ŷi),

PROOF. From Lemma 1.1, the asymptotic variance of a weighted estimator is:

AVarF̃ (τ̂W ) =
1

p
Varw(Yi(1)) +

1

1− p
Varw(Yi(0))

Using the residualized potential outcomes êi(1) and êi(0), the asymptotic variance of a
weighted residualized estimator is:

AVarF̃ (τ̂
res
W ) =

1

p
Varw(êi(1)) +

1

1− p
Varw(êi(0)).

From the definition of potential residuals, we can write the potential residuals as a function
of the original outcome values and the fitted values:

Varw(êi(0)) = Varw(Yi(0)− Ŷi)

= Varw(Yi(0)) +Varw(Ŷi)− 2Covw(Yi(0), Ŷi)(A5)

Varw(êi(1)) = Varw(Yi(1)− Ŷi)

= Varw(Yi(1)) +Varw(Ŷi)− 2Covw(Yi(1), Ŷi)(A6)
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Therefore, the difference in variances of our two estimators is

AVarF̃ (τ̂W )−AVarF̃ (τ̂
res
W )

=

{
1

p
Varw(Yi(1)) +

1

1− p
Varw(Yi(0)))

}
−
{
1

p
Varw(êi(1)) +

1

1− p

1

n0
Varw(êi(0))

}
=
1

p
·
(
Varw(Yi(1))−Varw(êi(1))

)
+

1

1− p
·
(
Varw(Yi(0))−Varw(êi(0))

)
Plugging in (A5) and (A6):

=− 1

p
·
{
Varw(Yi(1)) +Varw(Ŷi)− 2Covw(Yi(1), Ŷi)−Varw(Yi(1)

}
− 1

1− p
·
{
Varw(Yi(0)) +Varw(Ŷi)− 2Covw(Yi(0), Ŷi)−Varw(Yi(0)

}
=− 1

p(1− p)
·Varw(Ŷi) +

2

p
·Covw(Yi(1), Ŷi) +

2

1− p
·Covw(Yi(0), Ŷi)

1.4. Proof of Theorem 3.

The difference between the asymptotic variance of τ̂wLS and the asymptotic variance of
τ̂ reswLS is:

AVarF̃ (τ̂wLS)−AVarF̃ (τ̂
res
wLS)

=
1

p

{
Varw(Yi(1)− X̃⊤

i γ∗)−Varw(Yi(1)− ĝ(Xi))
}

+
1

1− p

{
Varw(Yi(0)− X̃⊤

i γ∗)−Varw(Yi(0)− ĝ(Xi))
}

+
2

p
Covw(êi(1), X̃

⊤
i γ

res
∗ ) +

2

1− p
Covw(êi(0), X̃

⊤
i γ

res
∗ )− 1

p(1− p)
Varw(X̃

⊤
i γ

res
∗ ),

where γ∗ and γres∗ are the true coefficients associated with the pre-treatment covariates, X̃i

defined in the weighted least squares regression (equation (13)) and the post-residualized
weighted least squares regression (equation (14)), respectively. Formally, γ∗ and γres∗ are
formally defined as the solution to the following optimization problems.

(A7) (τwLS , α∗, γ∗) = argmin
τ,α,γ

EF̃

{
ŵi

(
Yi − (τTi + α+ X̃⊤

i γ)
)2}

(A8) (τ reswLS , α
res
∗ , γres∗ ) = argmin

τ,α,γ
EF̃

{
ŵi

(
êi − (τTi + α+ X̃⊤

i γ)
)2}

PROOF.

AVarF̃ (τ̂wLS)−AVarF̃ (τ̂
res
wLS)(A9)

=

{
1

p
Varw(Yi(1)− X̃⊤

i γ∗) +
1

1− p
Varw(Yi(0)− X̃⊤

i γ∗)

}
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−
{
1

p
Varw(êi(1)− X̃⊤

i γ
res
∗ ) +

1

1− p
Varw(êi(0)− X̃⊤

i γ
res
∗ )

}
(A10)

The adjusted residualized outcomes can be re-written as a function of the residualized
outcomes and the fitted values from the regression. First, for the treatment outcomes:

Varw(êi(1)− X̃⊤
i γ

res
∗ ) = Varw(Yi(1)− ĝ(Xi)− X̃⊤

i γ
res
∗ )

= Varw(Yi(1)− ĝ(Xi)) +Varw(X̃
⊤
i γ

res
∗ )− 2Covw(Yi(1)− ĝ(Xi), X̃

⊤
i γ

res
∗ )

Similarly,

Varw(êi(0)− X̃⊤
i γ

res
∗ ) = Varw(Yi(0)− ĝ(Xi)− X̃⊤

i γ
res
∗ )

= Varw(Yi(0)− ĝ(Xi)) +Varw(X̃
⊤
i γ

res
∗ )− 2Covw(Yi(0)− ĝ(Xi), X̃

⊤
i γ

res
∗ )

Plugging into Equation (A10):

AVarF̃ (τ̂wLS)−AVarF̃ (τ̂
res
wLS)

=
1

p

{
Varw(Yi(1)− X̃⊤

i γ∗)−Varw(Yi(1)− ĝ(Xi))
}

+
1

1− p

{
Varw(Yi(0)− X̃⊤

i γ∗)−Varw(Yi(0)− ĝ(Xi))
}

−
{

1

p(1− p)
Varw(X̃

⊤
i γ

res
∗ )− 2

p
Covw(Yi(1)− ĝ(Xi), X̃

⊤
i γ

res
∗ )− 2

1− p
Covw(Yi(0)− ĝ(Xi), X̃

⊤
i γ

res
∗ )

}
=

1

p

{
Varw(Yi(1)− X̃⊤

i γ∗)−Varw(Yi(1)− ĝ(Xi))
}
+

1

1− p

{
Varw(Yi(0)− X̃⊤

i γ∗)−Varw(Yi(0)− ĝ(Xi))
}

+

{
− 1

p(1− p)
Varw(X̃

⊤
i γ

res
∗ ) +

2

p
Covw(êi(1), X̃

⊤
i γ

res
∗ ) +

2

1− p
Covw(êi(0), X̃

⊤
i γ

res
∗ )

}

1.5. Proof of Corollary 1.

The relative reduction in variance from residualizing is given by:

Relative Reduction :=
AVarF̃ (τ̂wLS)−AVarF̃ (τ̂

res
wLS)

AVarF̃ (τ̂wLS)
=R2

0 −
1

1 + f
· ξ

PROOF. Let C1 = 1/p and C0 = 1/1 − p. Furthermore, let ϵi(1) := Yi(1) − X̃⊤
i γ∗,

ϵi(0) := Yi(0) − X̃⊤
i γ∗, ϵresi (1) := êi(1) − X̃⊤

i γ
res
∗ , ϵresi (0) := êi(0) − X̃⊤

i γ
res
∗ . Then, we

can write the variance of the weighted least squares estimator (i.e., Lemma 4) as:

VarF̃ (τ̂wLS) =
1

p
Varw(ϵi(1)) +

1

1− p
Varw(ϵi(0)),

and similarly, the variance of the residualized weighted least squares estimator as:

VarF̃ (τ̂
res
wLS) =

1

p
Varw(ϵ

res
i (1)) +

1

1− p
Varw(ϵ

res
i (0)),

Then, we may re-write the relative reduction as follows:

AVarF̃ (τ̂wLS)−AVarF̃ (τ̂
res
wLS)

AVarF̃ (τ̂wLS)
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=
C1Varw(ϵi(1)) +C0Varw(ϵi(0))− (C1Varw(ϵ

res
i (1)) +C0Varw(ϵ

res
i (0)))

C1Varw(ϵi(1)) +C0Varw(ϵi(0))

=
C1Varw(ϵi(1))−C1Varw(ϵ

res
i (1)) +C0Varw(ϵi(0))−C0Varw(ϵ

res
i (0)))

C1Varw(ϵi(1)) +C0Varw(ϵi(0))

Dividing the numerator and denominator by C1 ·Var(ϵi(1)), and defining f =C0Varw(ϵi(0))/C1Varw(ϵi(1)):

=
1−Varw(ϵ

res
i (1))/Varw(ϵi(1)) + f − f ·Varw(ϵresi (0))/Varw(ϵi(0))

1 + f

=
1

1+ f

(
R2

1 + fR2
0

)
Using the definition of ξ =R2

0 −R2
1:

=
1

1+ f

(
R2

0 − ξ + fR2
0

)
=R2

0 −
1

1 + f
· ξ

2. Diagnostic Measure. We detail how to estimate the diagnostic measures in this sec-
tion. To estimate the diagnostic for the post-residualized weighted estimator, we compute the
estimated weighted variance of both the residuals and the outcomes for the units assigned to
control:

R̂2
0 = 1− V̂arw,0(êi)

V̂arw,0(Yi)

= 1−
∑

i∈S w
2
i (1− Ti)(êi − µ̂res

0 )2∑
i∈S w

2
i (1− Ti)(Yi − µ̂0)2

(A11)

where µ̂0 and µ̂res
0 are defined as:

(A12) µ̂0 =

∑
i∈S wi(1− Ti)Yi∑
i∈S wi(1− Ti)

, µ̂res
0 =

∑
i∈S wi(1− Ti)êi∑
i∈S wi(1− Ti)

For the post-residualized weighted least squares estimator, estimating the diagnostic fol-
lows similarly, but we now have to account for the covariate adjustment taking place:

R̂2
0,wLS = 1− V̂arw,0(êi − X̃⊤

i γ̂
res
0 )

V̂arw,0(Yi − X̃⊤
i γ̂0)

= 1−
∑

i∈S w
2
i (1− Ti)(ϵ̂

res
i − ϵ̂res0 )2∑

i∈S w
2
i (1− Ti)(ϵ̂i − ϵ̂0)2

,(A13)

where ϵ̂i represents the residuals estimated from regressing the outcomes Yi on the pre-
treatment covariates X̃i, across the subset of units assigned to control (i.e., Yi−X̃⊤

i γ̂0, where
γ̂0 is estimated by running the regression Yi ∼ X̃i across units assigned to control). ϵ̂resi is
analogously defined for the residualized outcomes êi. ϵ̂0 and ϵ̂res0 are the weighted average of
both ϵ̂i and ϵ̂resi , respectively.

When treating Ŷi as a covariate, the diagnostic can be estimated in an analogous way, but
by first performing sample splitting. More specifically, the procedure for including Ŷi as a
covariate for the weighted estimator is as follows:
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1. Across the subset of units assigned to control, randomly partition the units into two sub-
sets: S1 and S2. Without loss of generality, we will use S1 as our training sample, and S2

as our testing sample.
2. Regress Ŷi on the outcomes across S1 to obtain a β̂ value.
3. Using β̂, estimate the out-of-sample residuals êoosi across S2, where êoosi := Yi − β̂Ŷi.
4. Estimate the diagnostic using êoosi and the outcomes Yi across S2 using Equation (A11).
5. Cross-fit: repeat steps 1-3, but flipping S1 and S2 (i.e., regress Ŷi on the outcomes across

S2 to obtain a β̂ value, and estimate the diagnostic across S1).
6. Average the two diagnostic values together.

When including Ŷi as a covariate for the weighted least squares estimator, researchers can
repeat the procedure above; however, when estimating the diagnostic using êoosi , researchers
must account for X̃i. More specifically:

1. Follow Steps 1-3 above to obtain êoosi across S1.
2. Regress êoosi on X̃i, and regress Yi on X̃i across S2. Use Equation (A13) to estimate the

diagnostic value.
3. Cross fit, and average the two diagnostic values together.

When researchers have relatively small sample sizes, it can be advantageous to perform
repeated sample splitting, and take the average of the diagnostic across all the repeated splits
(see Jacob (2020) for more details).

3. Simulations. This section provides details associated with the simulations described
in Section 6 of the main manuscript.

3.1. Simulation Set-Up. To begin, we randomly generate a set of covariates
[
X1 X2 XS Xτ

]
∼

MVN(0,Σ) with the following covariance structure:

Σ=


1 0 0.45 0.5
0 1 0 0

0.45 0 1 0.9
0.5 0 0.9 1


where, recall, (X1i,X2i) are observed pre-treatment covariates, XSi controls the probability
of inclusion in the experimental sample, and Xτi determines the treatment effect.

Unit i’s propensity for being included in the experimental sample (recorded as Si = 1) is
governed by a logit model on the covariate XSi:

P (Si = 1)∝ exp(XSi)

1 + exp(XSi)
.

At each iteration of the simulation, an experimental sample is drawn using the propensity
score, as well as a random sample of the population. The sampled population is used to
estimate the residualizing model and sampling weights.

Each specific data generating process for the potential outcome under control is deter-
mined by the values of the βs and γs and α. Below, we provide the parameter values and
simplified DGP for Yi(0).

• Scenario 1: Linear Data Generating Process, identical population/sample DGP
β1 = 2, β2 = 1, β3 = 0, βS = 0, γ1 = 0, γ2 = 0, γ3 = 0, γ4 = 0, α= 0, yielding:

Yi(0) = 2X1i +X2i + εi



LEVERAGING POPULATION OUTCOMES TO IMPROVE GENERALIZATIONS 13

Summary of Estimator Performance (N=10,000)

Weighted Weighted Least Squares
DiM τ̂W τ̂resW τ̂covW τ̂wLS τ̂reswLS τ̂covwLS

Scenario 1: Linear Outcome Model
n=100 MSE 36.44 30.05 1.48 1.34 1.34 1.34 1.30

Bias 3.60 -0.13 0.05 0.12 0.19 0.19 0.27
SE 4.85 5.48 1.22 1.15 1.14 1.14 1.11

n=1000 MSE 16.41 2.98 0.17 0.15 0.14 0.14 0.13
Bias 3.74 0.00 -0.01 0.00 0.00 0.00 0.01
SE 1.56 1.73 0.41 0.38 0.38 0.38 0.36

n=5000 MSE 14.39 0.64 0.04 0.03 0.03 0.03 0.03
Bias 3.72 0.01 0.00 0.00 0.01 0.01 0.01
SE 0.72 0.80 0.19 0.19 0.18 0.18 0.18

Scenario 2: Nonlinear Outcome Model
n=100 MSE 70.71 58.80 8.25 8.20 36.59 8.16 8.04

Bias 3.44 -0.30 0.09 0.14 0.04 0.23 0.26
SE 7.68 7.67 2.87 2.86 6.05 2.85 2.83

n=1000 MSE 20.37 5.58 0.82 0.80 3.53 0.79 0.78
Bias 3.78 0.05 -0.00 -0.00 0.05 0.00 0.01
SE 2.46 2.36 0.91 0.90 1.88 0.89 0.89

n=5000 MSE 14.80 1.17 0.18 0.18 0.83 0.17 0.17
Bias 3.68 -0.02 -0.01 -0.01 -0.03 -0.01 -0.00
SE 1.12 1.08 0.42 0.42 0.91 0.42 0.42

TABLE A1
Summary of estimator performance for Scenarios 1 and 2. The population is fixed at N = 10,000, and 1,000

iterations were run for each sample size. MSE is scaled by 100, and the bias and standard error are scaled by 10.

• Scenario 2: Nonlinear Data Generating Process, identical population/sample DGP
β1 = 2, β2 = 1, β3 = 0, βS = 2.5, γ1 = 0.5, γ2 = 3, γ3 = 2.5, γ4 = 0, α= 0, yielding:

Yi(0) = 2X1i +X2i + 0.5X2
1i + 3

√
|X2i|+ 2.5

(
X1i ·X2i

)
+ εi

• Scenario 3: Linear Data Generating Process, different population/sample DGP
β1 = 2, β2 = 1, β3 =−1, βS = βS , γ1 = 0, γ2 = 0, γ3 = 0, γ4 = 0, α= 0.5, yielding:

Yi(0) =2X1i +X2i + βS · (1− Si) · (0.5−X1i) + εi,

• Scenario 4: Nonlinear Data Generating Process, different population/sample DGP
β1 = 2, β2 = 1, β3 =−1, βS = βS , γ1 = 0.5, γ2 = 3, γ3 = 2.5, γ4 = 1.5, α = 0.5, yield-

ing:

Yi(0) =2X1i +X2i + 0.5X2
1i + 3

√
|X2i|+ 2.5

(
X1i ·X2i)

βS · (1− Si) · (0.5−X1i + 1.5X1i ·X2i) + εi,

For Scenarios 3 and 4, βS takes on values {−5,−2,−1,0,1,2,5}.

3.2. Supplementary Tables. Table A1 presents summary results for estimator perfor-
mance under Scenarios 1 and 2, including MSE, Bias, and SE. Column 1 presents the baseline
results for the difference-in-means (DiM). Columns 2-4 present the results for the weighted
estimators and columns 5-7 present results for the weighted least squares estimator. For the
weighted and weighted least squares estimators we present the standard estimator without
residualizing, the directly residualized estimator and inclusion of Ŷ as a covariate.

Table A2 presents summary results for estimator performance under Scenarios 3 and 4,
including MSE and Bias. In these scenarios we vary the value of βS , presented in column
1, which controls the degree of alignment between the experimental sample outcomes and
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Summary of Estimator Performance - Scenario 3 and 4 (N = 10,000)

Weighted Weighted Least Squares
DiM τ̂W τ̂resW τ̂covW τ̂wLS τ̂reswLS τ̂covwLS

βS MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias
Scenario 3: Linear Outcome
-5 16.41 3.74 2.98 0.00 10.69 -0.11 0.36 -0.03 0.14 0.00 0.14 0.00 0.13 0.01
-2.5 15.83 3.67 3.07 -0.06 2.55 0.06 0.25 0.01 0.14 0.02 0.14 0.02 0.13 0.04
-2 16.05 3.72 2.99 0.01 1.54 0.02 0.22 0.02 0.14 0.02 0.14 0.02 0.14 0.04
-1 16.11 3.73 2.88 0.05 0.39 -0.02 0.16 0.00 0.14 -0.00 0.14 -0.00 0.13 0.02
-0.5 16.37 3.75 2.89 0.07 0.17 -0.02 0.14 -0.00 0.13 0.00 0.13 0.00 0.13 0.02
0 16.50 3.75 3.04 0.06 0.16 0.00 0.14 0.00 0.13 0.00 0.13 0.00 0.13 0.02
0.5 16.38 3.74 3.19 0.04 0.41 0.01 0.21 0.01 0.13 0.01 0.13 0.01 0.12 0.02
1 16.11 3.72 3.03 0.00 0.92 0.01 0.54 0.02 0.13 -0.01 0.13 -0.01 0.12 0.01
2 16.23 3.74 3.03 0.01 2.68 0.04 2.68 0.05 0.14 -0.00 0.14 -0.00 0.13 0.01
2.5 16.09 3.71 3.15 -0.01 3.92 0.01 3.15 -0.00 0.14 -0.01 0.14 -0.01 0.13 0.01
5 16.33 3.71 3.23 0.00 14.32 -0.01 1.54 0.02 0.14 -0.00 0.14 -0.00 0.13 0.01
Scenario 4: Nonlinear Outcome
-5 20.31 3.74 5.77 0.04 37.03 -0.01 5.66 0.04 3.72 0.05 26.19 0.10 1.02 0.03
-2.5 20.31 3.74 6.17 -0.01 9.55 0.10 5.10 0.04 3.96 0.05 7.57 0.06 1.67 0.04
-2 19.50 3.65 5.92 -0.08 6.22 -0.00 4.27 -0.04 3.86 -0.04 5.05 -0.05 2.89 -0.00
-1 19.77 3.73 5.71 -0.02 2.18 -0.08 2.14 -0.07 3.91 -0.09 1.92 -0.05 1.08 0.02
-0.5 19.75 3.68 5.70 -0.06 1.10 -0.03 1.09 -0.03 3.96 -0.12 1.06 -0.01 0.83 0.05
0 19.74 3.69 5.81 -0.04 0.81 0.01 0.80 0.01 3.71 -0.05 0.77 0.02 0.77 0.02
0.5 20.49 3.83 5.40 0.09 1.42 0.03 1.30 0.03 3.65 0.04 1.09 0.01 0.75 0.02
1 20.24 3.80 5.52 0.08 2.84 -0.05 2.04 -0.01 3.95 0.06 1.91 -0.07 0.80 -0.01
2 20.03 3.72 5.83 0.05 7.99 -0.02 3.04 0.02 4.24 0.03 5.27 -0.06 0.84 -0.00
2.5 20.45 3.74 6.04 0.06 12.15 -0.11 3.51 -0.01 4.28 0.05 8.32 -0.09 0.85 -0.00
5 20.80 3.75 6.29 0.08 45.95 -0.25 5.05 0.02 4.09 0.06 29.97 -0.27 0.92 -0.02

TABLE A2
Summary of estimator performance for Scenarios 3 and 4, where n= 1,000 and N = 10,000. 1,000 iterations

were run for each βS value. The bias is scaled by 10, and the MSE is scaled by 100.

the population outcomes. We fix the experimental sample size at n = 1,000. Columns 2-
3 presents the baseline results for the difference-in-means (DiM). Columns 4-9 present the
results for the weighted estimators and columns 10-15 present results for the weighted least
squares estimator. For the weighted and weighted least squares estimators we present the
standard estimator without residualizing, the directly residualized estimator and inclusion of
Ŷ as a covariate.

In Table A3 we summarize the true positive and true negative rates for the diagnostic mea-
sures for the post-residualized estimators.1 Column 1 presents the value of βS . Columns 2-9
present the post-residualized weighted, post-residualized weighted least squares, the post-
residualized weighted estimator with Ŷ as a covariate, and the post-residualized weighted
least squares estimator with Ŷ as a covariate, respectively. We see that in general, the diag-
nostic measures are able to adequately capture when residualizing results in precision gain.
We see that using sample splitting to estimate the pseudo-R2 measure for the case in which
we include Ŷi as a covariate can sometimes be conservative, which results in a low true pos-
itive rate in cases when the divergence between the experimental sample and population are
rather large. In cases where residualizing always leads to losses or gains in precision, the total
number of true positive or true negative rates is zero (respectively).

Finally, in Table A4 we evaluate the 95% coverage rates for the proposed post-residualized
estimators. We see that in all scenarios, we achieve at least nominal coverage. When the pop-
ulation and sample data generating processes diverge significantly, we showed in the previous

1True positive rates were calculated by taking the total number of true positives (i.e., cases where the diagnostic
correctly indicated there would be efficiency gain from residualizing) and dividing by the total number of cases
in which residualizing led to efficiency gain. True negatives are similarly defined.



LEVERAGING POPULATION OUTCOMES TO IMPROVE GENERALIZATIONS 15

Diagnostic Performance across Simulations

τ̂resW τ̂covW τ̂reswLS τ̂covwLS
βS TPR TNR TPR TNR TPR TNR TPR TNR
Scenario 3: Linear Outcomes
-5 0/0 1000/1000 1000/1000 0/0 207/472 329/528 338/705 166/295
-2.5 1/942 58/58 1000/1000 0/0 203/499 304/501 308/694 177/306
-2 999/1000 0/0 1000/1000 0/0 216/514 288/486 310/689 175/311
-1 1000/1000 0/0 1000/1000 0/0 219/525 287/475 293/689 188/311
-0.5 1000/1000 0/0 1000/1000 0/0 214/519 282/481 293/689 183/311
0 1000/1000 0/0 1000/1000 0/0 223/523 275/477 283/683 177/317
0.5 1000/1000 0/0 1000/1000 0/0 222/536 268/464 260/666 194/334
1 1000/1000 0/0 1000/1000 0/0 233/519 283/481 254/669 199/331
2 999/1000 0/0 998/1000 0/0 228/490 321/510 297/695 175/305
2.5 0/0 999/1000 188/490 346/510 209/466 336/534 341/705 149/295
5 0/0 1000/1000 1000/1000 0/0 214/486 303/514 322/699 155/301
Scenario 4: Nonlinear Outcomes
-5 0/0 1000/1000 360/718 224/282 0/0 1000/1000 58/1000 0/0
-2.5 0/0 998/1000 881/985 10/15 0/0 1000/1000 0/1000 0/0
-2 87/217 738/783 950/996 2/4 0/0 998/1000 0/994 5/6
-1 1000/1000 0/0 1000/1000 0/0 1000/1000 0/0 1000/1000 0/0
-0.5 1000/1000 0/0 1000/1000 0/0 1000/1000 0/0 1000/1000 0/0
0 1000/1000 0/0 1000/1000 0/0 1000/1000 0/0 1000/1000 0/0
0.5 1000/1000 0/0 1000/1000 0/0 1000/1000 0/0 1000/1000 0/0
1 1000/1000 0/0 1000/1000 0/0 999/1000 0/0 1000/1000 0/0
2 13/28 907/972 1000/1000 0/0 22/28 906/972 1000/1000 0/0
2.5 0/0 1000/1000 1000/1000 0/0 0/0 1000/1000 1000/1000 0/0
5 0/0 1000/1000 999/1000 0/0 0/0 1000/1000 1000/1000 0/0

TABLE A3
True positive rates (TPR) and true negative rates (TNR) for the diagnostic measures.

sections that there could be a loss in efficiency from using post residualized weighting. How-
ever, coverage rates are not affected by residualizing.

4. Additional Information for Empirical Application. As discussed in Section 7, we
construct our target population using a leave-one-out procedure. Table A5 provides a sum-
mary of the site specific and target population average treatment effects. More specifically,
the difference-in-means (DiM) columns denote the experimental estimate in the specific site.
The target PATE is defined as the average difference-in-means estimate across the other 15
sites. Standard errors are presented in parentheses. Certain sites, such as MT (Butte, MT)
contain only 38 experimental units, and the point estimate of the experimental site DiM is
vastly different from the target PATE. Thus, we expect the task of generalizing to be more
difficult for these sites.

4.1. Estimating the Residualizing Model. Pre-treatment covariates were taken from the
baseline survey conducted at the beginning of the original JTPA experiment, to assess
whether or not individuals were eligible for JTPA services. A full list of the covariates in-
cluded in the residualizing model is provided in Table A6. In addition to the pre-treatment
covariates, we also include normalized measures of previous earnings. Specifically, we in-
clude the z-score of an individual’s previous earnings, relative to the experimental site, as
well as the z-score of an individual’s previous earnings, relative to the entire population.
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Coverage Rates

Weighted Weighted Least Squares
βS τ̂W τ̂resW τ̂covW τ̂wLS τ̂reswLS τ̂covwLS
Scenario 3: Linear Outcome
-5 0.95 0.95 0.97 0.99 0.99 0.99
-2.5 0.95 0.96 0.97 0.98 0.98 0.98
-2 0.95 0.97 0.98 0.97 0.97 0.98
-1 0.95 0.97 0.98 0.98 0.97 0.98
-0.5 0.95 0.98 0.99 0.98 0.98 0.98
0 0.95 0.99 0.98 0.99 0.99 0.99
0.5 0.95 0.97 0.98 0.99 0.99 0.99
1 0.96 0.95 0.95 0.98 0.98 0.98
2 0.95 0.94 0.94 0.98 0.98 0.98
2.5 0.94 0.94 0.94 0.98 0.98 0.98
5 0.94 0.94 0.95 0.98 0.98 0.99
Scenario 4: Nonlinear Outcome
-5 0.95 0.96 0.95 0.96 0.96 0.96
-2.5 0.94 0.96 0.95 0.96 0.96 0.95
-2 0.96 0.96 0.96 0.96 0.96 0.96
-1 0.96 0.97 0.97 0.95 0.96 0.95
-0.5 0.95 0.95 0.96 0.95 0.95 0.96
0 0.94 0.96 0.96 0.95 0.96 0.96
0.5 0.95 0.96 0.96 0.96 0.96 0.97
1 0.95 0.94 0.96 0.95 0.96 0.96
2 0.95 0.95 0.96 0.94 0.95 0.96
2.5 0.96 0.95 0.96 0.94 0.95 0.96
5 0.96 0.94 0.94 0.94 0.95 0.96

TABLE A4
95% coverage rates of Normal approximation confidence intervals across 1000 simulations.

Summary of Experimental Sites and Target Population

Earnings Employment
Expt. Target Pop Prob. of (in $1000) (Percentage)

Site Location Size (n) Size (N ) Treatment DiM Target PATE DiM Target PATE
CC Corpus Christi, TX 524 5578 0.65 -0.21 (1.16) 1.37 (1.16) -0.28 (3.2) 1.8 (3.2)
CI Cedar Rapids, IA 190 5912 0.63 1.35 (1.89) 1.24 (1.89) -0.77 (5.07) 1.71 (5.07)
CV Coosa Valley, GA 788 5314 0.66 1.63 (0.95) 1.18 (0.95) 5.95 (2.63) 0.98 (2.63)
HF Heartland, FL 234 5868 0.73 0.95 (1.38) 1.28 (1.38) 6.8 (5.07) 1.42 (5.07)
IN Fort Wayne, IN 1392 4710 0.67 1.73 (0.83) 1.1 (0.83) -0.4 (1.58) 2.23 (1.58)
JC Jersey City, NJ 81 6021 0.64 -0.53 (3.01) 1.27 (3.01) -2.39 (9.66) 1.67 (9.66)
JK Jackson, MO 353 5749 0.67 2.16 (1.22) 1.19 (1.22) 5.66 (4.16) 1.38 (4.16)
LC Larimer County, CO 485 5617 0.69 1.61 (1.32) 1.21 (1.32) -1.97 (3.24) 1.93 (3.24)
MD Decatur, IL 177 5925 0.70 1.24 (2.5) 1.23 (2.5) 0.03 (5.24) 1.67 (5.24)
MN Northwest MN 179 5923 0.67 -1.43 (2.3) 1.32 (2.3) -0.52 (6.26) 1.69 (6.26)
MT Butte, MT 38 6064 0.71 -5.21 (4.1) 1.27 (4.1) -7.41 (5.14) 1.67 (5.14)
NE Omaha, NE 636 5466 0.66 1.11 (0.98) 1.25 (0.98) -1.15 (2.56) 1.98 (2.56)
OH Marion, OH 74 6028 0.70 -2.99 (2.71) 1.3 (2.71) -6.82 (10.37) 1.74 (10.37)
OK Oakland, CA 87 6015 0.64 1.83 (3.48) 1.24 (3.48) 3.34 (10.77) 1.57 (10.77)
PR Providence, RI 463 5639 0.69 3.03 (1.34) 1.12 (1.34) 6.78 (4.58) 1.34 (4.58)
SM Springfield, MO 401 5701 0.67 0.6 (1.31) 1.29 (1.31) 5.44 (3.34) 1.36 (3.34)

TABLE A5
Summary of the JTPA study.
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Baseline Covariates included in Residualizing Models

Ethnicity Weeks Worked† Public Assistance History Family Income†

White Zero Food Stamps Less than $3,000
Black 1-26 weeks Cash Welfare, other than AFDC $3,000-$6,000
Hispanic 27-52 weeks Unemployment Benefits More than $6,000
AAPI

Earnings AFDC Histories Accessibility
Education Previous Earnings‡ * Ever AFDC case head Driver’s License
ABE/ESL Weekly Pay * Case head anytime† Car available for regular use
High school diploma Quantile within Site * Received AFDC† Telephone at home
GED certificate < 25% * Years as AFDC case head:
Some college > 50% * Less than 2 years Household Composition
Occupational Training > 90% * 2-5 years Marital Status
Technical certificate Quantile across Experiment * More than 5 years Spouse present
Job search assistance < 25% * Household Size
Years of Education‡ * > 50% * Age Number of children present

> 90% * Age‡ * Child under 6 present
Work History Non-Zero Previous Earnings * Age Buckets
Ever employed UI Reported Earnings 20-21 Geographic Region
Employed upon application 22-29 West *
Total earnings† Living in Public Housing 30-44 Midwest *
Hourly earnings Yes 45-54 South *
Hours worked * 55 or older North *

TABLE A6
We provide a list of all of the covariates included in the Super Learner. Many of these variables were included in the original JTPA study’s regression model. Any variable denoted
with an asterisk (∗) was not included in the original JTPA study’s regression model. † indicates that the measure is from the past 12 months prior to the baseline survey, ‡ indicates

higher order terms included of that variable.
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Weighted Estimator Weighted Least Squares
τ̂W τ̂resW τ̂covW τ̂wLS τ̂reswLS τ̂covwLS

Earnings 2.37 2.07 2.19 2.46 2.28 2.24
Employment (× 100) 8.53 8.06 8.21 7.95 7.65 8.01

TABLE A7
Mean absolute error across sites.

4.2. Numerical Results for Empirical Application. Table A7 provides numerical results
for the mean absolute error across all 16 experimental sites for the six different estimators.
We note that the mean absolute error of the point estimates do not vary substantially from
using post-residualized weighting. This supports the results in Section 7.2.1.

Table A8 reports the estimated standard errors (columns 3-5 for weighted estimators and
columns 8-10 for weighted least squares estimators) for each site, along with the estimated di-
agnostics (columns 6-7 for weighted estimators and columns 11-12 for weighted least squares
estimators). In general, the diagnostics are able to adequately determine whether or not we
expect there to be improvements in standard error for accounting for the population outcome
information, as discussed in Section 7.2.2.

Finally, Table A9 presents the true positive rate and false positive rate for our diagnostics
across the sites where the diagnostic indicated residualizing would increase precision (or
not). We present these counts for both outcomes, separately.

4.3. Using Proxy Outcomes. To illustrate use of a proxy outcome, we run the same anal-
ysis as in Section 7, except we use employment as a proxy for earnings, and vice versa when
building the residualizing model. This mimics a situation in which we have access to a re-
lated, but different outcome measure in our target population. Because employment is binary
while earnings are continuous, we expect that direct residualizing may not result in substan-
tial efficiency gains, and thus that our diagnostic measures would indicate not to residualize.
However, treating Ŷi as a covariate should still result in efficiency gain, as earnings and em-
ployment are correlated and the model can adjust for the scaling differences.

4.3.1. Bias. Table A10 presents the mean absolute error of the different estimation meth-
ods. When earnings is the outcome, both directly residualizing and using Ŷi as a covariate
result in relatively stable performance. However, when employment is the outcome, the scal-
ing differences between earnings (in $1000) and the binary employment measure lead to
large residuals. We see a loss to precision from direct residualizing, and exacerbated finite
sample bias. However, when including Ŷi as a covariate, we are able to account for the scaling
differences, and the mean absolute error is lower.

4.3.2. Diagnostics. We estimate the same diagnostics as in Section 7.2.1 to determine
when to expect precision gains from performing post-residualized weighting. We summarize
the true positive and true negative rates of the diagnostic in Table A11. We see that the
performance of the diagnostic is good for direct residualization. However, we see that the
diagnostic for including Ŷi as a covariate is relatively conservative, and fails to identify all the
cases in which it is beneficial to residualize. However, the true negative rate of the diagnostic
for including Ŷi as a covariate is very high (almost 100%), which indicates that the diagnostic
is very effective at identifying when residualizing fails to lead to precision gain.

Table A12 provides the standard errors and diagnostic measures for each site and estima-
tor. Within the “Weighted” and “Weighted Least Squares” sections, the left three columns
present the standard error for the corresponding estimator for each site, and the right two
columns present the diagnostic measure. One key takeaway is that, when employment is the
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Standard Errors and Diagnostics for Residualizing Models for Residualizing Models

Weighted Weighted Least Squares

Site n τ̂W τ̂resW τ̂covW R̂2
0 R̂2

0,cov τ̂wLS τ̂reswLS τ̂covwLS R̂2
0,wLS R̂2

0,wLS,cov
Outcome: Earnings
NE 636 1.70 1.53 1.53 0.23 0.22 1.58 1.53 1.53 0.08 0.06
LC 485 2.46 2.02 2.11 0.42 0.32 2.40 2.08 2.14 0.38 0.26
HF 234 1.88 1.63 1.66 0.36 0.19 1.87 1.66 1.69 0.42 0.18
IN 1392 1.03 0.93 0.92 0.25 0.26 1.00 0.91 0.91 0.22 0.21
CV 788 1.40 1.25 1.22 0.04 0.01 1.36 1.23 1.20 0.08 0.07
CC 524 2.51 2.52 2.48 -0.06 -0.18 2.42 2.42 2.39 -0.13 -0.23
JK 353 2.29 2.28 2.25 0.19 -0.25 2.19 2.18 2.16 0.30 0.10
MT 38 6.44 7.04 8.40 -0.36 -9.31 4.64 4.83 6.09 0.40 -3.90
PR 463 2.69 2.61 2.60 0.08 -0.16 2.82 2.75 2.71 0.03 -0.17
MN 179 4.79 4.70 4.80 -0.03 -0.35 3.72 4.26 4.20 -0.31 -0.56
MD 177 2.87 2.46 2.48 0.33 0.24 2.67 2.30 2.32 0.30 0.13
SM 401 2.07 2.28 2.12 -0.30 -0.13 2.13 2.23 2.11 -0.14 -0.09
OH 74 3.97 3.27 3.42 0.33 -0.22 3.94 3.75 3.77 0.29 -0.37
CI 190 3.84 3.33 3.07 0.41 0.31 3.47 3.15 2.94 0.28 -0.18
OK 87 4.69 5.07 4.64 -0.05 -0.43 4.61 4.39 4.22 0.14 -0.19
JC 81 7.24 8.81 8.50 -0.75 -1.15 6.14 7.51 6.56 -0.19 -0.49
Outcome: Employment
NE 636 0.04 0.04 0.04 0.03 -0.01 0.04 0.04 0.04 0.02 -0.00
LC 485 0.06 0.06 0.05 0.19 0.20 0.06 0.06 0.05 0.11 0.09
HF 234 0.06 0.06 0.06 0.04 -0.03 0.06 0.06 0.06 0.02 -0.03
IN 1392 0.02 0.02 0.02 -0.15 -0.04 0.02 0.02 0.02 -0.21 -0.08
CV 788 0.03 0.03 0.03 -0.01 -0.01 0.03 0.03 0.03 -0.03 -0.01
CC 524 0.06 0.06 0.06 -0.09 -0.10 0.06 0.06 0.06 -0.10 -0.08
JK 353 0.10 0.09 0.09 0.13 -1.53 0.09 0.09 0.09 0.08 -0.85
MT 38 0.13 0.13 0.13 — — 0.13 0.15 0.14 — —
PR 463 0.06 0.06 0.06 0.03 -0.05 0.07 0.06 0.07 0.03 -0.03
MN 179 0.13 0.12 0.11 0.23 -3.09 0.12 0.11 0.11 0.21 -0.89
MD 177 0.09 0.08 0.08 0.19 -0.06 0.08 0.08 0.08 0.20 -4.0e28
SM 401 0.06 0.06 0.06 0.07 -0.15 0.06 0.06 0.06 0.05 -0.03
OH 74 0.07 0.06 0.07 0.09 -1.78 0.08 0.07 0.08 0.08 -1.8e28
CI 190 0.04 0.04 0.05 0.19 -0.07 0.05 0.05 0.05 0.27 -4.4e28
OK 87 0.21 0.19 0.19 0.12 -2.03 0.17 0.17 0.18 0.21 -1.35
JC 81 0.16 0.14 0.14 -0.88 -3.88 0.12 0.13 0.13 -0.92 -0.58

TABLE A8
Standard error and diagnostic values for post-residualized weighting across the 16 experimental sites for two

primary outcomes–earnings and employment. The diagnostic values for the site of Butte, Montana (MT) are null
when outcome is employment, because all units in the control group were unemployed.

Weighted Estimator Weighted Least Squares
τ̂resW τ̂covW τ̂reswLS τ̂covwLS

Earnings
True Positive Rate 10/11 7/12 11/11 7/13
True Negative Rate 5/5 4/4 4/5 3/3

Employment
True Positive Rate 11/13 1/12 10/10 1/7
True Negative Rate 3/3 4/4 5/6 8/9

TABLE A9
Performance of proposed diagnostic measures, as measured through the true positive rate and false positive rate.

outcome, using earnings as a proxy outcome results in large scaling differences between our
residualizing model, captured by Ŷi, and the true outcome measure. This is unsurprising since
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Estimator Performance Summary with Proxy Outcomes

Weighted Weighted Least Squares
τ̂W τ̂resW τ̂covW τ̂wLS τ̂reswLS τ̂covwLS

Earnings 2.37 2.35 2.14 2.46 2.44 2.21
Employment (× 100) 8.53 66.15 7.85 7.95 65.33 7.45

TABLE A10
Mean absolute errors for each estimator, across all experimental sites when using proxy outcomes.

Weighted Estimator Weighted Least Squares
τ̂resW τ̂covW τ̂reswLS τ̂covwLS

Earnings
True Positive Rate 13/14 7/12 12/13 6/13
True Negative Rate 2/2 4/4 2/3 3/3

Employment
True Positive Rate – 2/12 – 3/10
True Negative Rate 16/16 4/4 16/16 5/6

TABLE A11
Performance of proposed diagnostic measures using proxy outcomes, as measured through the true positive rate

and false positive rate.

earnings is continuous and employment is binary. As a result, the R̂2
0 measures for the esti-

mators that use direct residualizing (i.e., τ̂ resW and τ̂ reswLS) are all negative, indicating that we
should not use direct residualizing in that setting. However, even in this scenario, the diagnos-
tic for using Ŷi as a covariate does not indicate significant gains. When using employment as
a proxy for earnings, the diagnostics indicate small gains to direct residualizing across most
sites, and gains from including Ŷi as a covariate across about half of sites.

4.3.3. Efficiency Gain. Table A12 presents the standard errors of each weighting method,
with and without post-residualizing, for each site. Table A13 presents the average standard
error across sites for post-residualized weighting using proxy outcomes, where we restrict
our attention to the sites identified by the diagnostic measures for when we expect precision
gains. When using employment as a proxy for earnings, direct residualizing indicates small
gains in 13/16 sites, and including Ŷi as a covariate indicates gains in just under half of sites.
The relative improvement in variance is small due to the differences in magnitude between Ŷi
and Yi. In particular, we see around a 0.3-0.4% reduction in variance from performing direct
residualizing. However, when including Ŷi as a covariate, which accounts for the scaling
difference, the improvements are more substantial. In particular, when using Ŷi as a covariate
in the weighted estimator, there is a 14% reduction in variance. Using weighted least squares,
there is a 9% reduction in variance from including Ŷi as a covariate. The primary takeaway to
highlight is that using Ŷi as a covariate to perform post-residualized weighting can allow us
to leverage proxy outcomes that exist on different scales than the outcome of interest, where
we expect greater gains the more closely related the outcome and proxy outcome are.

For employment, we do not consider direct residualizing because the diagnostic measure
did not identify any experimental sites in which directly residualizing would lead to precision
gains. When including Ŷi as a covariate the diagnostic indicated 5 sites that indicate gains
from post-residualized weighting; among these we see a 5% reduction in variance when using
Ŷi as a covariate in the weighted estimator, and a 1% reduction in variance in the weighted
least squares estimator. Finally, we emphasize that estimating the PATE results in variance
inflation relative to the within-sample difference-in-means, as expected. However, we see that
post-residualized weighting can offset some of this loss in precision.
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Standard Errors and Diagnostics for Residualizing Models with Proxy Outcomes

Weighted Weighted Least Squares

Site n τ̂W τ̂resW τ̂covW R̂2
0 R̂2

0,cov τ̂wLS τ̂reswLS τ̂covwLS R̂2
0,wLS R̂2

0,wLS,cov
Outcome: Earnings
NE 636 1.70 1.70 1.62 0.00 0.09 1.58 1.58 1.53 0.00 0.03
LC 485 2.46 2.45 2.39 0.00 0.15 2.40 2.40 2.37 0.00 0.05
HF 234 1.88 1.88 1.76 0.01 0.15 1.87 1.86 1.78 0.01 0.08
IN 1392 1.03 1.03 0.96 0.01 0.27 1.00 0.99 0.95 0.01 0.21
CV 788 1.40 1.40 1.39 0.00 -0.06 1.36 1.36 1.37 0.00 -0.03
CC 524 2.51 2.51 2.46 0.01 -0.03 2.42 2.41 2.40 0.00 -0.10
JK 353 2.29 2.28 2.10 0.01 0.07 2.19 2.18 2.07 0.01 0.04
MT 38 6.44 6.44 9.60 -0.00 -9.23 4.64 4.65 7.32 0.01 -5.86
PR 463 2.69 2.69 2.70 0.00 -0.16 2.82 2.82 2.82 -0.00 -0.15
MN 179 4.79 4.78 4.13 0.00 0.13 3.72 3.71 3.71 0.00 -0.14
MD 177 2.87 2.87 2.61 0.01 0.14 2.67 2.66 2.43 0.01 0.16
SM 401 2.07 2.07 2.04 0.00 -0.07 2.13 2.12 2.06 0.00 -0.02
OH 74 3.97 3.97 4.00 0.00 -0.44 3.94 3.93 3.75 0.00 -0.50
CI 190 3.84 3.84 3.40 0.00 -0.03 3.47 3.47 3.07 0.00 -0.22
OK 87 4.69 4.71 4.51 -0.01 -0.88 4.61 4.61 4.06 -0.01 -0.67
JC 81 7.24 7.26 8.52 -0.01 -0.82 6.14 6.17 6.75 -0.01 -0.83
Outcome: Employment
NE 636 0.04 0.56 0.04 -352.40 -0.00 0.04 0.49 0.04 -248.43 -0.01
LC 485 0.06 0.70 0.05 -220.79 0.13 0.06 0.56 0.05 -193.43 0.02
HF 234 0.06 0.94 0.06 -260.76 -0.02 0.06 0.90 0.06 -282.80 0.06
IN 1392 0.02 0.34 0.02 -391.67 -0.04 0.02 0.32 0.02 -354.59 -0.05
CV 788 0.03 0.42 0.03 -151.95 0.02 0.03 0.38 0.03 -129.68 0.03
CC 524 0.06 1.00 0.06 -284.99 -0.21 0.06 0.89 0.06 -236.05 -0.18
JK 353 0.10 1.10 0.08 -104.99 -3.17 0.09 0.92 0.08 -88.67 -2.13
MT 38 0.13 2.42 0.12 — — 0.13 2.49 0.13 — —
PR 463 0.06 0.93 0.06 -228.05 -0.05 0.07 0.80 0.07 -200.67 -0.06
MN 179 0.13 1.57 0.13 -207.13 -14.37 0.12 1.61 0.12 -189.16 -3.35
MD 177 0.09 0.93 0.08 -66.00 -0.14 0.08 0.81 0.08 -77.66 -4.7e28
SM 401 0.06 0.76 0.06 -95.56 -0.12 0.06 0.68 0.06 -84.67 -0.10
OH 74 0.07 1.77 0.07 -1202.77 -0.56 0.08 1.60 0.08 -985.02 -2.4e28
CI 190 0.04 1.40 0.05 -1312.75 -0.47 0.05 1.41 0.05 -1241.70 -1.1e28
OK 87 0.21 3.24 0.16 -249.20 -1.29 0.17 2.44 0.16 -65.65 -0.28
JC 81 0.16 3.20 0.17 -6487.60 -4.51 0.12 1.70 0.14 -300.75 -0.24

TABLE A12
Standard error and diagnostic values for post-residualized weighting using proxy outcomes across the 16

experimental sites for two primary outcomes–earnings and employment. Once again, the diagnostics for MT are
null when employment is the outcome, because all the units in the control group are unemployed.

This exercise shows how a proxy outcome can be used for building the residualizing
model. When the two variables are on very different scales, we expect that direct residu-
alizing would not be beneficial, as evidenced here and captured by our diagnostic measures.
Including Ŷi as a covariate addresses scaling concerns, although as we see when using earn-
ings as a proxy for employment, does not always allow for gains. We see that even using
proxy outcomes, our diagnostic measures can accurately capture when there is potential for
precision gains, and our post-residualized weighting method can lead to precision gains in
estimation of the target PATE.
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