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Abstract

Multi-site/context studies have become popular strategies to address the most common

and challenging external validity concerns about contexts. Under such studies, scholars

conduct causal studies in each site and evaluate whether findings generalize across sites.

Despite the potential, there has been little guidance on the fundamental research design

question—how should we select sites for external validity? Existing approaches have chal-

lenges: random sampling of sites is often infeasible, while the current practice of purposive

sampling is suboptimal without statistical guarantees. We propose synthetic purposive sam-

pling (SPS), which optimally selects diverse sites for external validity. SPS combines ideas

of purposive sampling and the synthetic control method—it selects diverse sites such that

non-selected sites are well approximated by the weighted average of the selected sites. We

illustrate its general applicability using both experimental and observational studies. Over-

all, this paper offers a new statistical foundation to design multi-site studies for external

validity.
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1 Introduction

Over the last twenty years, social science has experienced a credibility revolution and made sig-

nificant progress toward internal validity, focusing on unbiased estimation of causal effects within

a study. Another fundamental, long-standing methodological debate revolves around external

validity (Shadish, Cook and Campbell, 2002; Egami and Hartman, 2023). While the concept of

external validity is multi-dimensional, the essential question to social scientists involves contexts:

how can researchers generalize causal findings across different contexts? For example, do exper-

imental findings about voter information campaigns in Kenya generalize to other countries in

Africa? What do causal findings about partisan bias in several US cities teach us about partisan

bias more generally in the US? These are some of the most common and yet most challenging

external validity concerns social scientists face in practice across disciplines.

A promising strategy to address this question is a multi-site/multi-context causal study where

researchers conduct experimental or observational studies in multiple contexts to compare and

aggregate findings across contexts.1 Such multi-site causal studies are powerful strategies to-

ward external validity because researchers can explicitly exploit across-context heterogeneity

rather than extrapolating causal findings from a single context, which often requires untenable

assumptions (e.g., Shadish, Cook and Campbell, 2002; Blair and McClendon, 2020).

Recognizing the importance of external validity, an increasing number of scholars deploy

multi-site causal studies. In the top 10 political science journals, the number of multi-site causal

studies has increased gradually over time (see Figure 1). There were only a few multi-site

studies before 2010, but the number has increased steadily since then. One popular type is

a multi-country survey experiment that tests how causal findings vary across countries (e.g.,

Tomz and Weeks, 2013; Valentino et al., 2019; Arechar et al., 2023), and Bassan-Nygate et al.

(2023) is a recent prominent example testing the external validity of well-known IR experimental

findings. To understand the growing trend of multi-site causal studies in a broader picture, we

1We define a multi-site causal study to be a study where researchers have (experimental

or observational) identification strategies for internal validity within each site and researchers

compare results across sites for external validity.
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Figure 1: Increasingly Popular Multi-Site Causal Studies.
Note: In the top left panel, blue (red) bars represent multi-site experimental (observational)
studies. The plots are based on a review of articles published in the top 10 political science
journals from 2000 to 2022. See Appendix D for more details on the literature review process.

also counted the number of papers using other established methods in the same top 10 political

science journals. We find that the recent increase in multi-site causal studies is comparable to

that of conjoint analysis, and the number of multi-site studies has already exceeded the number

of papers using other well-known methods, such as text analysis and instrumental variables,

in recent years. This increasing trend is expected to continue because running experiments in

multiple contexts has become easier and cheaper (e.g., survey companies offer online panels in

many countries with low cost) and observational identification strategies have been widely used

across contexts. In addition, multi-site causal studies have been strongly supported by initiatives

like Metaketa by EGAP (e.g., Blair et al., 2021). Overall, Figure 1 shows an exciting pattern

that multi-site causal studies have become widely used not only by large-scale coordinated efforts

like Metaketa but also by many individual researchers. Many papers on external validity also

endorse multi-context studies explicitly or implicitly (e.g., McDermott, 2011; Findley, Kikuta

and Denly, 2020; Egami and Hartman, 2023; Slough and Tyson, 2022; Wilke and Samii, 2023).
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Despite this significant and promising increase in multi-site causal studies, there has been

little systematic guidance on the fundamental research design question—how should we select

study sites for external validity? This question of site selection is essential because causal findings

in the social sciences can substantially vary across study sites that differ in political, economic,

demographic, and other characteristics. Unless sites are selected systematically, results from

selected sites are not generalizable to broader contexts and cannot improve external validity

credibly. Unfortunately, existing strategies available to applied social scientists are limited and

have well-known challenges.

Broadly speaking, there are two classes of existing strategies: random sampling and purposive

sampling. First, if feasible, random sampling of sites is a powerful approach to make generalizable

causal claims from multi-site studies. Randomly selected sites are representative, and researchers

are protected from known and unknown systematic bias in site selection. However, unfortunately,

in practice, random sampling from all the sites of theoretical interest is often infeasible because

of logistical and ethical reasons. Indeed, our literature review found only two studies that use

random sampling (less than 2 % of all multi-site studies we reviewed).

Given the difficulty of random sampling, researchers often rely on purposive sampling (Shadish,

Cook and Campbell, 2002), which is a non-probability sampling technique that selects sites with

“theoretical purposes.” While it has a number of well-developed variants in the literature, in

the practice of empirical studies, the most popular version of purposive sampling is to select

diverse sites such that the chosen study sites cover heterogeneous contextual factors (about 80%

of multi-site studies justify their site selection in this manner). For example, when studying

attitudes toward immigrants using survey experiments (e.g., Naumann, F. Stoetzer and Pietran-

tuono, 2018; Valentino et al., 2019), researchers would select diverse countries with different sizes

of immigrant populations, GDP, and unemployment rates.

Although the current practice of purposive sampling has some methodological benefits, it suf-

fers from several key challenges. First, because researchers currently select diverse sites mostly

by hand, they are often forced to focus on one or two site-level variables, even if other theo-

retically relevant factors exist (our literature review finds that the average number of covariates

researchers diversify is 2.17). Second, the process of purposive sampling is often not transparent
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Table 1: Comparison of Existing Alternatives and Synthetic Purposive Sampling.
Note: SPS improves upon conventional purposive sampling by incorporating ideas from the
synthetic control method (SCM).

or reproducible (Fearon and Laitin, 2008). Finally, purposive sampling is often not formally

connected to subsequent statistical analyses, and, as a result, the current practice has no explicit

statistical guarantees. Overall, in the words of Olsen et al. (2013), the current practice can be

seen as “stratified convenience sampling,” i.e., researchers carefully discuss one or two contextual

factors to stratify, but they choose the most convenient sites after stratification.

In this paper, we develop a novel approach to optimally select study sites for external validity.

Our goal is to keep various benefits of purposive sampling, such as practicality and interpretabil-

ity, while providing transparency and a statistical foundation. In particular, we propose synthetic

purposive sampling (SPS), which improves upon conventional purposive sampling by incorporat-

ing ideas from the synthetic control method (Abadie, Diamond and Hainmueller, 2010). SPS

selects diverse sites such that non-selected sites can be well approximated by the weighted aver-

age of the selected sites. By doing so, even without random sampling, we can make the weighted

average of selected sites representative of all the sites, including non-selected sites. We also

propose a corresponding SPS estimator to aggregate causal estimates from selected study sites.

The proposed SPS overcomes the shortcomings of existing methods (see Table 1). First, it

is a flexible approach. SPS can accommodate logistical and practical constraints. For example,

where researchers can run experiments is often constrained by non-theory-driven reasons, such

as funding opportunities, availability of collaborators, and knowledge of the local context and

language. Rather than hiding such real constraints social scientists face, SPS will select the op-
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timal set of study sites within such user-specified constraints. Researchers can also incorporate

theoretical and domain knowledge by combining classical purposive sampling and SPS. For ex-

ample, scholars can first select one or two sites based on qualitative knowledge (e.g., because the

sites are typical of a given substantive theory of interest or because they provide a hard test) and

then use SPS for selecting the remaining sites to complement and improve the diversity of study

sites. Second, it is transparent. Using SPS, researchers can clarify all the factors and constraints

that have affected site selection. Importantly, SPS can explicitly incorporate many theoretically

relevant site-level covariates, unlike the current practice of purposive sampling that focuses only

on one or two variables. Finally, SPS has a clear statistical foundation. We prove that the SPS

estimator minimizes the worst-case mean squared error, within a large class of weighted average

estimators that includes conventional meta-analysis estimators. SPS possesses both practicality

and a statistical foundation, whereas existing methods offer only one of these features.

Our algorithm is general and is designed to help researchers systematically select study sites

in a wide range of applications. For example, researchers can use SPS to select diverse countries

for multi-country causal studies. SPS can also be used to select sites within a country when

selecting cities, districts, states, schools, and so on. To illustrate the general applicability, we

demonstrate the use of SPS with five empirical applications across different subfields, ranging

from experimental to observational studies and from studies conducted in a few sites to studies

conducted in more than 10 sites (see Table 2). We also offer a companion R package spsR, which

can implement all the methods described in this paper (see Appendix B for an introduction to

the package with code examples).

Overall, this paper offers a new statistical foundation to design multi-site studies for external

validity. We take a prospective approach to explicitly design multi-site studies for external

validity upfront before data collection. While it is currently common to think about external

validity only at the final stage of studies after data collection (e.g., when writing up papers), such

post hoc adjustment requires strong and often untenable assumptions, especially when external

validity concerns are about contexts. SPS allows researchers to explicitly address external validity

concerns about contexts upfront through their research design.

In the next section, we begin with several motivating applications. After reviewing the
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challenges of existing methods (Section 3), we introduce SPS (Section 4) and discuss how to

aggregate causal evidence from multiple sites (Section 5). We then reanalyze the empirical

applications introduced earlier (Section 6). We offer practical recommendations and clarify

precautions in Section 7. In Section 8, we discuss connections to other important literature, such

as case selection in qualitative studies.

Related Literature

This paper builds on several lines of work. First, we contribute to the growing literature on ex-

ternal validity (e.g., Shadish, Cook and Campbell, 2002; Tipton, 2013; Allcott, 2015; Bareinboim

and Pearl, 2016; Coppock, Leeper and Mullinix, 2018; Meager, 2019; Munger, 2019; Blair and

McClendon, 2020; Findley, Kikuta and Denly, 2020; Vivalt, 2020; Egami and Hartman, 2021;

Miratrix, Weiss and Henderson, 2021; Chassang and Kapon, 2022; Devaux and Egami, 2022;

Slough and Tyson, 2022; Bassan-Nygate et al., 2023; Egami and Hartman, 2023; Findley, Denly

and Kikuta, 2023; Wilke and Samii, 2023). While we focus on the question about contexts in

this paper, other dimensions of external validity, such as populations, outcomes, and treatments,

are also essential. We discuss the potential use of SPS for other dimensions of external validity

in Section 8.2.

Second, this paper also builds on the large methodological literature on multi-site studies

(e.g., Raudenbush and Liu, 2000; Tipton, 2013; Tipton et al., 2014; Tipton and Peck, 2017;

Gechter et al., 2023). For example, Tipton (2013) and Tipton et al. (2014) developed a stratified

sampling approach by combining ideas of balanced sampling and cluster analysis. These methods

are designed for and successful in education and health research where the number of study

sites is relatively large. For example, these papers consider settings where “the sample would

typically include between 20 and 60 schools or districts” (p.112; Tipton, 2013). In contrast, our

paper focuses on settings common in political science and related social science fields where the

number of study sites is small (while the sample size in each site is relatively large). Indeed, our

literature review of the top political science journals finds that the median number of study sites

is 3 and the 80th percentile is 6.6. Our proposed SPS approach is specifically designed for this

small sample regime by combining ideas from conventional purposive sampling and the synthetic
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Table 2: A Wide Range of Empirical Applications Analyzed in this Paper.
Note: Given space constraints, we offer the first three applications in the main text and the last
two applications in Appendix A.

control method, which was also developed for the small sample regime.

Finally, our paper builds on the literature on the synthetic control method (Abadie, Diamond

and Hainmueller, 2010). Methodologically, our optimization problem is similar to that of the

recent synthetic design (e.g., Abadie and Zhao, 2021; Doudchenko et al., 2021) that combines the

synthetic control method and experimental design to choose treatment assignment for internal

validity. The main difference is that SPS selects sites for external validity (rather than treatments

for internal validity), which leads to different causal estimands, constraints we add to the main

optimization problem, and estimators. We introduce them step by step in Sections 4 and 5.

2 Motivating Empirical Applications

To demonstrate how our approach can improve a wide range of multi-site studies, we use a

diverse set of empirical applications (see Table 2). Examples cover different types of causal

studies (field and survey experiments as well as observational studies), numbers of sites (from

small to moderate and large), types of sites (countries across continents and counties within the

US), and subfields (American politics, comparative politics, and international relations).

In this section, we briefly describe three empirical applications, which serve as illustrative

examples throughout the paper. Given that a vast majority of existing multi-site studies are

experimental (see Figure 1), we use multi-site experiments as the main examples. We offer two

additional empirical applications, including an observational study, in Appendix A.

7



2.1 Field Experiments in US Counties: Partisan Bias in Hiring

In the age of polarization, scholars have found that partisanship influences not only political

but also economic and social domains in the US. In an influential study, Gift and Gift (2015)

conducted field audit experiments in two US counties—one highly conservative and one highly

liberal—to examine whether partisan signals affect hiring. In particular, within each county,

they sent out politically branded resumes that randomly included liberal, conservative, or no

partisan signals. The authors found that job candidates with out-partisan affiliations are less

likely to obtain a callback than candidates without any partisan affiliation. We will use this work

to illustrate how researchers can apply SPS to systematically select a small number of diverse

study sites for external validity.

2.2 Survey Experiments in Europe: Attitudes toward Immigrants

A long-standing question in the immigration literature asks whether natives prefer high-skilled

migrants to low-skilled migrants. Naumann, F. Stoetzer and Pietrantuono (2018) tackled this

question by running survey experiments in 15 European countries that differ in the size of im-

migrant population, GDP, unemployment rates, and so on. In each country, they conducted

a survey experiment where they randomly changed the skill level of hypothetical immigrant

groups (high- or low-skilled) and asked respondents to show the support level for a given immi-

grant group. They found that, in all 15 countries, respondents preferred high-skilled immigrants

to low-skilled immigrants, while there are substantial variations in effect size across countries.

This study will serve as an example of how to use the proposed method in increasingly

popular, multi-country survey experiments. Such multi-country survey experiments are likely to

continue growing as popular online platforms can recruit survey respondents across the world.2

2.3 Metaketa in the Global South: Community Policing

A multi-site field experiment has become famous in political science partly due to a large-scale

collective effort by EGAP’s Metaketa initiative. The most recent Metaketa project by Blair

et al. (2021) examines whether community policing can build citizen trust in police and reduce

2Lucid offers surveys in more than 130 countries, and YouGov covers more than 70 markets.
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crime by conducting coordinated field experiments in six countries in the Global South (Brazil,

Colombia, Liberia, Pakistan, Philippines, and Uganda). They found that the community policing

intervention did not improve citizen-police relationships or reduce crime. We will use this as an

example to demonstrate how the proposed method can help researchers systematically select

diverse sites by explicitly accommodating logistical and ethical constraints.

3 Existing Methods and Their Methodological Challenges

3.1 Random Sampling

Random sampling of sites is one of the most powerful strategies for external validity (Shadish,

Cook and Campbell, 2002; Fearon and Laitin, 2008). Its biggest advantage is that randomly

selected study sites are representative of a population of sites that researchers are interested

in. Thus, researchers are protected from both known and unknown systematic biases in site

selection.

Unfortunately, random sampling is often infeasible in social science applications due to logis-

tical and ethical constraints (see also Findley, Kikuta and Denly, 2020). For example, scholars

might consider conducting field experiments related to elections in Wisconsin. Yet, it might be

ethically and logistically impossible to do so, given that it is a battleground state. Indeed, we

find only two studies that use random sampling of sites in our literature review of multi-site

studies.

Another challenge of random sampling is that it might be ineffective when the number of

study sites is small, which is the case in political science. Our literature review finds that the

median number of sites is 3 and the 80th percentile is 6.6 (see Appendix D). When the number of

study sites is small, random sampling can be ineffective because fundamental statistical theorems

(e.g., the central limit theorem) are not applicable to a sample size that is too small.

We emphasize that researchers should conduct random sampling of sites, if random sampling

is logistically and ethically feasible and the number of study sites to be sampled is relatively

large. This kind of situation can arise in certain areas, such as in education research, where

scientists often have a relatively large number of schools as sites.
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However, as clarified above, random sampling has been infeasible in most political science

applications, and researchers have commonly used an alternative approach of purposive sampling,

which we discuss next.

3.2 Conventional Purposive Sampling

Purposive sampling is a class of non-probability sampling techniques that select sites with “the-

oretical purposes.” It has a long history in the research design literature (Shadish, Cook and

Campbell, 2002) and has a wide range of well-developed variants, such as typical, extreme, and

most similar selections (Seawright and Gerring, 2008).

In practice, the most popular version is to select diverse sites such that the chosen study

sites cover a wide range of values in each site-level variable relevant to a substantive theory

of interest. For example, in Gift and Gift (2015), the authors selected two US counties that

differ in partisanship, one highly conservative and one highly liberal. Naumann, F. Stoetzer and

Pietrantuono (2018) examined attitudes toward immigrants using survey experiments in diverse

countries that differ in sizes of immigrant populations, GDP, unemployment rates, and so on. In

our literature review of the top 10 political science journals, we find that about 80% of multi-site

studies justify their site selection by clarifying how selected diverse sites differ in a wide range

of contextual factors.

The biggest advantage of purposive sampling is its practicality and interpretability. Unlike

random sampling, researchers can easily incorporate prior theoretical and domain knowledge as

well as logistical and ethical constraints they face. For example, researchers might have strong

theoretical and logistical reasons for conducting studies in Uganda—it is a hard test for a given

theory, and a researcher has a local partner who can help her run high-quality experiments.

While purposive sampling has many methodological benefits, its current practice suffers from

several key challenges. First, because researchers currently select diverse sites mostly by hand,

they are often forced to pick only one or two site-level variables, even when it is likely that

other relevant factors matter (in our literature review, we find that the average number of

covariates researchers diversify is 2.17). Second, the process of purposive sampling is often not

transparent or reproducible (Fearon and Laitin, 2008). Finally, purposive sampling is usually
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not directly connected to the formal causal inference framework or to subsequent statistical

analyses. As a result, the current practice of purposive sampling has no explicit statistical

guarantees about external validity analysis. Overall, the current practice of purposive sampling

can be characterized as “stratified convenience sampling” (Olsen et al., 2013), i.e., researchers

carefully consider one or two contextual factors to stratify, but they ultimately opt for the most

convenient sites after stratification.

4 Synthetic Purposive Sampling

In this section, we propose a general site selection method for external validity, which we call

synthetic purposive sampling (SPS). SPS improves upon conventional purposive sampling by

combining ideas from the synthetic control method (Abadie, Diamond and Hainmueller, 2010).

We will show that SPS naturally introduces diversity in contextual factors, as the current

practice of purposive sampling aims to do. Unlike conventional purposive sampling, however,

the main benefit of SPS is that it selects diverse sites with transparency and statistical guar-

antees. Overall, SPS merges the benefits of random sampling (e.g., statistical guarantees and

transparency) and those of purposive sampling (e.g., practicality and interpretability).

4.1 Framework for Site Selection

Before introducing SPS, we begin by developing a framework for site selection. We first define

N potential sites of interest as the target population of sites, which is the target against which

the external validity of a given substantive theory is evaluated. Specifying the target population

of sites is equivalent to clarifying the studies’ scope conditions, and thus, this choice should be

guided by substantive research questions and underlying theories of interest (Findley, Kikuta and

Denly, 2020; Egami and Hartman, 2023). For example, Naumann, F. Stoetzer and Pietrantuono

(2018) are interested in countries in Europe where immigration is a salient political issue. We

also provide detailed practical guidance in Section 7.1.

In most scenarios, researchers cannot extensively study all N sites of potential interest.

Among them, researchers select NS sites to run randomized experiments where NS ≤ N. To

focus on issues of external validity, we consider randomized experiments here, but our general
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methodology also accommodates observational studies (see an application of an observational

multi-site study in Appendix A). For example, in our reanalysis of Naumann, F. Stoetzer and

Pietrantuono (2018) (Section 6.1), we define N = 15 European countries as the target population

of sites, and we select NS = 6 countries as study sites. We assume that researchers use the same

treatment and outcome variables to capture the same underlying theoretical concepts in each

site (see Slough and Tyson, 2022; Wilke and Samii, 2023).

We now define quantities of interest. For each site k ∈ {1, . . . , N}, we use θk to denote the

Site-Specific Average Treatment Effect (ATE), which is the average effect of the treatment in

site k. For sites researchers select for randomized experiments, they can easily obtain unbiased

estimates θ̂k, using simple estimators like difference-in-means.

The main issue of external validity is that researchers are not only interested in the estimates

in selected sites but also in whether causal conclusions are generalizable to a broader population

of N sites. We can define the Average-Site ATE as

θAS :=
1

N

N∑
k=1

θk, (1)

which represents the average of the ATEs across all N sites of interest, which also includes sites

that we did not select. This average-site ATE allows us to investigate whether causal findings in

selected sites generalize to a population of N sites specified by the scope condition. This quantity

of interest is widely used and is similar to the common estimand in meta-analyses of multi-site

experiments (see, e.g., Gerber and Green, 2012; Blair et al., 2021; Bassan-Nygate et al., 2023).

Researchers are also often interested in testing the implications of a theoretical mechanism by

estimating causal effects separately for different subgroups of sites. We can define the Subgroup

Average-Site ATE (also known as the conditional average-site ATE) as

θgsub :=
1

Ng

∑
k:Gk=g

θk, (2)

which represents the average of the ATEs among a subgroup of sites with variable Gk = g where

Ng is the number of sites with Gk = g. For example, in Naumann, F. Stoetzer and Pietrantuono

(2018), researchers might be interested in testing whether the extent to which natives prefer high-

skilled immigrants to low-skilled immigrants is stronger in countries with higher fiscal exposure
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to migration (i.e., the net burden of migration on public finances is higher) than in countries with

lower fiscal exposure (see also Valentino et al., 2019). To examine the implications of this theory,

researchers can estimate the subgroup average-site ATEs separately for countries with high and

low fiscal exposure (i.e., variable G is fiscal exposure and g ∈ {high, low}). By comparing these

subgroup average-site ATEs, researchers can systematically explore the across-site heterogeneity

of the ATE. As in subgroup analyses and conditional ATE analyses that are standard in single-

site experiments, it is important to note that while each of the subgroup average-site ATE is a

causal effect, the difference between them is descriptive.3

If researchers can randomly sample study sites, it is straightforward to unbiasedly estimate

θAS and θgsub using the average or the subgroup average of difference-in-means in each selected

site. However, as discussed in Section 3, random sampling of sites is often infeasible in most

social science applications. In the next subsection, we will propose a new approach that selects

diverse study sites in order to credibly estimate these causal quantities of interest.

Note that even if researchers are not specifically interested in estimating the (subgroup)

average-site ATEs, our proposed method can also be used as a way to select diverse sites with

statistical transparency and flexibility. We discuss this agnostic view of the proposed method in

Section 7.

4.2 The Proposed Methodology

We now introduce synthetic purposive sampling (SPS). Like purposive sampling, SPS selects

diverse sites. But unlike the current practice of purposive sampling, we design site selection by

explicitly taking into account downstream analyses, i.e., how to use selected sites for generaliza-

tion. In particular, we use weighted average estimators as in the synthetic control method—we

use the weighted average of selected sites to approximate non-selected sites.

The weighted average estimator is desirable in several ways. First, it is a safe and conservative

estimator as it focuses on interpolation and avoids extrapolation. Second, it is also a stable

estimator that works well with small sample sizes. Finally, it is a familiar estimator to social

scientists as most meta-analysis estimators are also weighted average estimators, even though

3Note that we discuss connections between our method and meta-regression in Section 7.
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how we construct weights is distinct from meta-analysis estimators.

By combining these ideas, SPS will select diverse sites such that non-selected sites can be well

approximated by the weighted average of the selected sites. By doing so, even without random

sampling, we can make the weighted average of selected sites representative of a population of

N sites, including non-selected sites.

More concretely, like existing purposive sampling approaches, the first step of SPS is to choose

site-level variables Xk = (Xk1, Xk2, . . . , XkL) that users want to diversify across sites where L is

the number of site-level variables. In particular, researchers should include contextual variables

that are theoretically expected to explain differences in the ATEs across sites. This choice needs

to be based on the theoretical and domain knowledge of a given application (Findley, Kikuta and

Denly, 2020; Bassan-Nygate et al., 2023). For example, to run multi-country survey experiments

on attitudes toward immigrants, researchers might diversify the size of immigrant populations,

GDP, and unemployment rates, which are key contextual factors discussed by theories in the

immigration literature. In a study of partisan bias in hiring by Gift and Gift (2015), the original

authors wanted to diversify the unemployment rate because hiring companies in counties with

higher unemployment rates are likely to have a larger pool of job candidates such that they might

have more rooms for using partisanship to distinguish applicants who are otherwise similar in

qualifications.

This step of choosing theoretically relevant site-level variables is what researchers are already

doing when diversifying one or two variables by hand in the conventional purposive sampling

approach. With SPS, researchers can incorporate any number of theoretically relevant covariates

that are expected to moderate the ATEs across sites.4

We emphasize that SPS is not a substitute for theoretical arguments of the underlying mech-

anism and domain knowledge essential in site selection. Rather, researchers must use the theo-

retical and domain knowledge of a given application to choose site-level variables they diversify

via SPS. The method we offer augments theoretical discussion by systematically and optimally

diversifying variables chosen based on domain knowledge in each application.

4There are a large number of site-level data sets available across different geographic units,

e.g., country-, state-, city-, and district-level data (see Appendix C).
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Figure 2: Illustration with Simple Simulated Data.
Note: Panels (a) and (b) consider two and four variables, respectively. Scatter plots show values
of site-level variables X of selected sites (red triangles) and non-selected sites (black circles).
Density plots on the diagonal and histograms in the last rows compare the distribution of site-
level variables between selected (red) and non-selected (black) sites.

Given the choice of theoretically relevant site-level variables, SPS will select diverse sites such

that variables Xk of non-selected site k ∈ R is well approximated by the weighted average of

variables Xj of selected sites j ∈ S. Here, S and R represent sets of selected and non-selected

sites, respectively. For example, we select diverse sites such that the GDP of each non-selected

country can be well approximated by the weighted average of GDP in selected countries.

Below, we focus on how we can optimally diversify observed covariates chosen by users. We

discuss unobserved moderators and introduce a procedure similar to cross-validation that can

empirically assess the potential influence of unobserved site-level variables in Section 5.1, as it is

clearer to discuss them after introducing the SPS estimator there.

4.2.1 Illustration

Here, we illustrate SPS with a simple simulation study where researchers choose five sites from

the population of 20 potential sites (see Figure 2). When researchers have only two variables

to consider (Figure 2-(a)), it is a relatively easy task to choose five sites. If one can select
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sites close to the center and four corners in the scatter plot, other non-selected sites will be

“inside” (formally, within a convex hull) of selected sites, which means those non-selected sites

can be well approximated by the weighted average of selected sites. In this simple example, SPS

selected sites as such (selected sites are represented by red triangles and non-selected sites by

black circles). Importantly, selected sites cover a wide range of values in both contextual factors

(X1, X2). Histograms in the last row of Figure 2-(a) show the marginal distributions of each

variable.

However, in practice, researchers often want to consider many theoretically relevant variables

X that are predictive of across-site heterogeneity of causal effects. As shown in Figure 2-(b), even

when they have only four variables, they have to simultaneously consider six two-dimensional

figures. This task becomes even more infeasible when researchers have more variables to consider.

In such scenarios, the value of SPS becomes even clearer. By solving an internal optimization

problem, SPS can consider many variables simultaneously and choose diverse sites. Figure 2-

(b) shows that SPS indeed selects diverse sites such that many non-selected sites can be well

approximated in all dimensions. As a result, selected sites cover a wide range of values in all

four contextual factors (see the last row of Figure 2-(b)).

4.2.2 Optimization Problem behind SPS

To formally introduce SPS, we require some notation. Define Sk to be a binary variable taking 1

if site k is selected as a study site and taking 0 otherwise. Thus, S = (S1, S2, . . . , SN) represents

which sites are selected for experiments. We use Wjk to denote the weight we assign to selected

site j when predicting the ATE of non-selected site k. Then, we can define an imbalance measure

Bk` for non-selected site k’s variable ` as

Bk`(W,S) := (Xk` −
∑

j:Sj=1

WjkXj`)
2,

which captures how well the `th covariate of non-selected site k is approximated by the weighted

average of selected sites. For example, when Germany was not selected, Bk`(W,S) could measure

how well Germany’s GDP is approximated by the weighted average GDP of selected countries.

SPS minimizes the average imbalance among non-selected sites by selecting optimal sites S

and weights W. For presentational clarity, we start with the most basic version of SPS below
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and later provide a recommended version that builds on the following basic one. Formally, the

basic version of SPS solves the following minimization problem.

min(S, W)
1

N −NS

N∑
k=1

(1− Sk)

(
1

L

L∑
`=1

Bk`(W,S)

)
︸ ︷︷ ︸

Imbalance for non-selected site k

(3)

with regular constraints that (i) the number of selected sites is NS, and (ii) weights are positive

and sum to one. In practice, we standardize variables to make the scale of variables comparable.

By solving the optimization problem, we get two outputs at the same time. First, we get

the optimal selection of sites Ŝ. These sites are selected such that non-selected sites can be well

approximated by the selected sites. Second, we also get weights Ŵ that we use to approximate

non-selected sites using the selected sites.

The objective function consists of two parts. First, 1
L

∑L
`=1Bk`(W,S) captures the imbalance

for site k, averaging over L site-level variables. Second, by multiplying this by (1 − Sk), the

objective function averages over the imbalance only for non-selected sites k. Overall, the objective

function represents how well the site-level variables X of non-selected sites R are approximated

by the weighted average of selected sites S. SPS minimizes this overall imbalance, thus finding

the selection of sites and weights that make this approximation the best.

Note that when sites were already selected (i.e., S is fixed), one only needs to estimate

weights, which is similar to the optimization problem of the original synthetic control method

(Abadie, Diamond and Hainmueller, 2010; Xu, 2017).5 When one wants to consider internal

validity and choose a treatment assignment, this optimization is similar to the synthetic design

(Abadie and Zhao, 2021; Doudchenko et al., 2021). The main difference is that SPS selects sites

for external validity (rather than treatments for internal validity), which will lead to different

causal estimands, types of constraints we add to the main optimization problem, and downstream

causal estimators.

5While SPS is inspired by the synthetic control method, SPS does not presume data on a

history of pre-treatment outcome variables.
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Table 3: Examples of Constraints and Domain Knowledge that SPS can Incorporate.

4.2.3 Incorporating Domain Knowledge and Practical Constraints into SPS

In practice, we recommend incorporating additional constraints informed by practical consider-

ations and substantive theories of interest. Table 3 summarizes examples of domain knowledge

and practical constraints users may add to SPS. The companion R package spsR allows users to

incorporate these constraints using simple functions (see Appendix B).

First, researchers can easily incorporate practical, logistical and ethical constraints. For ex-

ample, scholars might be interested in using survey experiments to study political behavior in

Africa, whereas some African countries might not have online survey panels. In other cases,

researchers might not be able to select certain countries because they do not have local collab-

orators or local knowledge. In these scenarios, users can add Sk = 0 for any infeasible sites k

as a constraint, which guarantees that those infeasible sites are not selected. Similarly, if users

want to always select a particular site, e.g., Uganda, as one of the study sites for its substantive

importance, they can add SUganda = 1 as a constraint. When, for example, funding conditions

require researchers to choose certain sites, they can also include such restrictions here.

Second, as currently done in conventional purposive sampling, it is recommended to stratify
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SPS to prioritize important site-level variables. For example, users can make sure to have at

least two democracies and at least two autocracies. If users are worried about selecting too many

extreme cases, they can explicitly stratify the SPS algorithm to choose both typical and diverse

sites. For example, researchers can make sure to select countries from different quantiles of GDP.

See formalization in Table 3.

Third, researchers can also incorporate various other domain knowledge into SPS. (a) Users

can incorporate not only Xk themselves but also any flexible functions of site-level variables,

e.g., interaction and higher order terms, to capture nonlinearity in the data. (b) Researchers can

incorporate varying importance of site-level variables, e.g., based on predictive power as in the

standard synthetic control method. (c) Users can ensure that selected sites are geographically

diverse and distant enough from each other. Other examples include budget constraints, differ-

ential costs of each site, and different sample sizes in each site. See Appendix E.3 for how to

formalize these different considerations within SPS.

Finally, users can also add penalty terms to improve the basic SPS algorithm. First, to avoid

relying on extreme cases, users can add the following penalty term to prioritize sites closer to

non-selected sites.

1

N −NS

N∑
j=1

N∑
k=1

Wjk Sj(1− Sk)
1

L

L∑
`=1

(Xj` −Xk`)
2

︸ ︷︷ ︸
Distance between

Selected Site j and Non-Selected Site k

, (4)

which captures the weighted average of the pair-wise distance between selected site j and non-

selected site k. By incorporating this as the penalty term, users can make SPS more robust to

outliers. As discussed above, we also recommend using simple stratification if users are worried

about extreme cases. Second, users can also add the following penalty term to encourage uniform

weights, which increases efficiency of estimating the (subgroup) average-site ATEs.

1

N −NS

N∑
j=1

N∑
k=1

Sj(1− Sk)W 2
jk (5)

We provide formal discussions about these penalty terms in Section 5.2.
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5 From Site Selection to External Validity Analysis

Once we complete studies in each selected site, how can we aggregate evidence for external

validity analysis? In this section, we consider how to estimate the average-site and subgroup

average-site ATEs by combining causal estimates from selected sites. We also discuss how to

empirically assess the potential influence of unobserved confounders using a procedure similar to

cross-validation.

5.1 SPS Estimator

After selecting sites and conducting experiments in those selected sites, researchers can use the

conventional ATE estimator θ̂j, e.g., difference-in-means, for selected sites j ∈ S. If researchers

use quasi-experimental observational studies, they can also use existing estimators for θ̂j under

corresponding identification assumptions.

The proposed SPS estimator for the average-site ATE is then defined as,

θ̂AS :=
1

N

(∑
j∈S

θ̂j +
∑
k∈R

θ̂Wk
)

(6)

where, for non-selected sites k ∈ R, θ̂Wk :=
∑

j∈S Ŵjkθ̂j and weights Ŵjk are estimated in SPS

(equation (3)). This simply averages over the site-specific ATE estimates from selected and non-

selected sites. We emphasize that we primarily use θ̂Wk as an intermediate step toward estimating

the (subgroup) average-site ATE, which is the main quantity of interest defined in Section 4.1.

Similarly, the proposed SPS estimator for the subgroup average-site ATE is defined as,

θ̂gsub :=
1

Ng

( ∑
j∈S,Gj=g

θ̂j +
∑

k∈R,Gk=g

θ̂Wk
)

(7)

where we average over the site-specific ATE estimates from selected and non-selected sites with

variable G equal to g. For example, in Naumann, F. Stoetzer and Pietrantuono (2018), variable

G could be fiscal exposure and g ∈ {high, low}. We propose the conservative variance estimator

in Appendix E.4. We also discuss connections to and differences from conventional meta-analysis

estimators in Appendix E.5.

The proposed SPS estimators are the optimal weighted average-based predictors that mini-

mize the worst-case mean squared error (see Section 5.2). Based on this theoretical foundation,
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we only view the SPS estimator to be an optimal predictor given observed site-level variables, and

importantly, we do not view SPS to be an unbiased estimator given the possibility of unobserved

moderators. Due to the inherent difficulty of external validity analysis, it is often impossible

to obtain an unbiased estimate of the (subgroup) average-site ATE without (often infeasible)

random sampling of sites, unless researchers make stringent modeling assumptions that we avoid

in this paper. Rather, we focus on constructing estimators that can minimize the prediction

error, while explicitly allowing for unobserved moderators.

Site-level Cross-Validation. Because of this theoretical foundation, researchers can empiri-

cally assess the potential influence of unobserved moderators after experiments by a procedure

similar to cross-validation. In particular, users can randomly choose half of the selected sites as if

they were unobserved non-selected sites and predict the average ATE of those non-selected sites

based on the remaining selected sites. By repeating the same procedure many times, researchers

can empirically check how well the SPS estimator can credibly infer the ATEs in non-selected

sites.

For each iteration b, we randomly split selected sites into two equally sized sets, as-if-non-

selected sites Sb
0 and as-if-selected sites Sb

1. Then, we test whether the difference between the

average-site ATE estimates in the as-if-non-selected sites and the estimated average-site ATE

based on the as-if-selected sites is statistically distinguishable from zero. Formally, the difference

is defined as,

δ̂b :=
1

Nb,0

∑
k∈Sb

0

θ̂k

︸ ︷︷ ︸
ASATE in

As-If-Non-Selected Sites

− 1

Nb,0

∑
k∈Sb

0

θ̂Wb
k︸ ︷︷ ︸

ASATE estimated from
As-If-Selected Sites

(8)

where θ̂Wb
k =

∑
j∈Sb

1
Ŵ b

jkθ̂j is a weighted average estimator for the ATE in the as-if-non-selected

site k based on the as-if-selected sites Sb
1. In each iteration b, we can obtain a p-value. As in typical

cross-validation, we repeat the same procedure many times by randomly splitting selected sites

and then combine p-values by the Holm–Bonferroni correction to account for multiple testing of

dependent p-values.

When the difference is small and not statistically distinguishable from zero, there is no evi-

dence of significant bias from unobserved site-level variables, while we can never confirm it as in
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usual statistical diagnostic tests. When the difference is large and statistically distinguishable

from zero, it implies large across-site heterogeneity, not explained by site-level variables. We view

this as an opportunity for further research (rather than a failure of the given multi-site study)

because it shows that there remains a large amount of across-site heterogeneity that existing the-

ories cannot account for. In such scenarios, researchers can consider sequential learning: rather

than viewing the current study as the final confirmation, researchers could suggest a new study

by sequentially applying SPS (see our empirical application in Section 6.3).

In practice, when researchers expect relationships between observed and unobserved variables

to be highly non-linear and they only have a few study sites, the statistical power of the test

could be lower. In contrast, when observed and unobserved variables have stronger correlations

or when researchers have more study sites, the statistical power is higher. Like any diagnostic

test in causal inference, the site-level cross-validation is not a panacea, and thus, in practice, we

recommend researchers augment the test with substantive discussion about potential unobserved

variables (see Section 7.2). We also note that future studies can explore how to incorporate the

equivalence testing approach (Hartman and Hidalgo, 2018) into the site-level cross-validation.

5.2 Statistical Properties

Formally, the proposed SPS estimator is the optimal weighted average-based predictor that

minimizes the worst-case mean squared error.

We show that

1

N

N∑
k=1

E
{(

θk − θ̂k(W)
)2}

. λ1 ×
1

N −NS

N∑
k=1

(1− Sk)

(
1

L

L∑
`=1

Bk`(W,S)

)

+ λ2 ×
1

N −NS

N∑
j=1

N∑
k=1

WjkSj(1− Sk)
1

L

L∑
`=1

(Xj` −Xk`)
2

+ λ3 ×
1

N −NS

N∑
j=1

N∑
k=1

Sj(1− Sk)W 2
jk. (9)

where . means that the inequality holds up to some constants unrelated to (S,W), and θ̂k(W) :=∑
j∈S Wjkθ̂j is a general weighted average estimator of the site-specific ATE. The first term on the

right-hand side is exactly the same as the main objective function of the SPS algorithm (equa-

tion (3)), and the second and third terms are equivalent to the penalty terms in equations (4)
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and (5). (λ1, λ2, λ3) are some constant parameters that capture the relative importance of the

three terms. Most importantly, because SPS directly minimizes the right-hand side of equa-

tion (9), the SPS estimator is a minimizer of the worst-case mean squared error.6 We provide

proof and additional discussions about the theoretical guarantees in Appendix E.1.

6 Empirical Applications

We now show that researchers can use SPS to systematically select diverse sites in a wide range

of applications. We do this by reanalyzing three applications introduced in Section 2. Given

space constraints, we offer two additional examples, including an application to an observational

study, in Appendix A.

6.1 Multi-Country Survey Experiments on Immigration

We first illustrate SPS using Naumann, F. Stoetzer and Pietrantuono (2018), which uses a multi-

country survey experiment—one of the most common types of multi-site experiments in recent

years. In this study, the authors used survey experiments in 15 European countries to study

whether and how much respondents prefer high-skilled immigrants to low-skilled immigrants

(see Section 2.2).

We conduct empirical validation—pretending that we can only select a subset of sites that

the original authors actually studied and validating whether we can recover the benchmark

estimate of the (subgroup) average-site ATEs. In particular, we use SPS to select six sites

out of 15 sites and then estimate the (subgroup) average-site ATE across all 15 sites. Because

the original authors actually conducted experiments in all 15 sites, we can compare our SPS

estimate based only on six sites to the actual experimental benchmark estimate. By doing so,

we can simultaneously test the real-world performance of the method and illustrate the use of

SPS.

6At the site selection stage, when we have not yet collected data, we cannot directly esti-

mate the mean squared error itself. However, we can instead examine its upper bound, which

incorporates the possibility of unmeasured moderators.
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6.1.1 Site Selection

The first step is to specify the target population of sites against which we evaluate external

validity. From this population of sites, SPS will purposively sample sites. The choice of the

target population should be based on a given substantive theory of interest (see more discussions

in Section 7). For the sake of a clear presentation, we use all 15 European countries in the

original paper as the target population of sites.

The second step is to specify site-level variables to diversify. We include seven variables

discussed in the original paper. The first four variables (GDP, size of migrant population, un-

employment rates, and fiscal exposure) are country-level variables common in the immigration

literature. Another variable is the baseline level of support for immigration by the general public

(measured in previous waves of the European Social Survey). Finally, the last two variables (the

mean age and the mean education) are country-level summary measures based on individual-level

characteristics. These variables considered in the original paper are key site-level variables that

are likely to explain the across-site heterogeneity of the ATEs.

The final step is to run SPS. As we recommend in Section 4, we include stratification to

improve diversification: for each continuous variable, we make sure to select at least one site

below the 20th percentile, at least one site between the 40th and 60th percentile, and at least

one site above the 80th percentile. For a binary variable (i.e., fiscal exposure), we make sure to

select at least one site with high exposure and at least one site with low exposure.

SPS selected Sweden, Denmark, Spain, Switzerland, Czechia, and the United Kingdom as six

study sites. Figure 3 visualizes the results of SPS. To make visualization cleaner, we standardized

each continuous variable such that each variable has a mean zero and a standard deviation one.

SPS successfully diversified each variable, covering sites with smaller values, close to the mean,

and with larger values. While it is extremely difficult for humans to simultaneously diversify

seven variables, SPS allows users to naturally diversify all chosen variables.

6.1.2 External Validity Analysis

Once experiments are conducted in each site, researchers can first report site-specific ATE es-

timates in the selected sites by focusing on internal validity (see Figure 4-(a)). Because SPS
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Figure 3: SPS Site Selection for the Multi-Country Experiment on Immigration.
Note: In scatter plots, red triangles (black circles) represent values of site-level variables of
selected (non-selected) sites. Plots in the last row and along the diagonal show the marginal
distributions of each variable.

diversified the site selection, we see large heterogeneity even across the selected sites. The site-

specific ATE estimates range from 13.5 percentage points to 41.3 percentage points.

For external validity analysis, we can first combine causal estimates from selected sites to

estimate the average-site ATE. By using the SPS estimator (equation (6)), we estimate the

average-site ATE to be 27.1 percentage points (95% CI = [15.1, 39.2]). Figure 4-(b) visualizes

the results. In this empirical validation, we can explicitly compare our estimate to the actual

experimental benchmark estimated from all 15 sites, which is 28.5 percentage points (95% CI =

[24.9, 32.1]). Several points are worth noting. First, the point estimate from the proposed SPS

is close to the experimental benchmark and lies within the 95% confidence interval. Second, as
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Figure 4: Results of the Multi-Country Experiment on Immigration.
Note: In Panels (b) and (c), the black circles and red squares represent estimates from SPS and
the experimental benchmarks, respectively.

expected, the standard error of the SPS estimator based only on six sites is much larger than

that of the experimental benchmark based on 15 sites. The difference in standard errors can be

interpreted as the gain from conducting experiments in more sites.

Researchers can also explore the subgroup average-site ATEs. For example, in Naumann,

F. Stoetzer and Pietrantuono (2018), researchers might be interested in testing whether the

extent to which natives prefer high-skilled immigrants to low-skilled immigrants is stronger in

countries with higher fiscal exposure to migration (i.e., the net burden of migration on public

finances is higher) than in countries with lower fiscal exposure. To examine the implications of

this hypothesis, we estimate the subgroup average-site ATEs for each subgroup (see Figure 4-

(c)). In contrast to the theoretical prediction from the fiscal burden theory, we find that the

extent to which natives prefer high-skilled immigrants to low-skilled immigrants is similar across

countries with different levels of fiscal exposure to migration (findings consistent with Valentino

et al. (2019)). We also find that our SPS estimates are close to the experimental benchmark.

Finally, it is recommended to investigate the potential influence of unobserved moderators

using site-level cross-validation where we randomly choose three of the selected sites as if they

were unobserved non-selected sites and predict the average ATE of those three non-selected

sites based on the remaining three selected sites. We estimated the p-value to be 0.99, finding no

evidence of significant bias from unobserved moderators, which is consistent with our comparisons
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against the experimental benchmark.

6.2 Metaketa Experiments on Community Policing

Blair et al. (2021) conducted a coordinated field experiment in six countries in the Global South

to estimate the causal effect of community policing on crime and citizen-police relationships

(see Section 2.3). As in many field experiments, this experiment by the Metaketa initiative

was severely constrained by various practical constraints, e.g., funding conditions, whether local

partners were willing to run experiments together with scientists, and whether researchers had

knowledge of the local context and language. How can researchers use SPS to select diverse sites

in settings where practical constraints are crucial, as in this study?

Following the original paper, we first define the target population of sites to be countries in

the Global South. The original experiments only considered countries with moderate to large

populations in Africa, Asia, and South America, so we also limit our target population to Global

South countries with populations of size at least 1 million in the three regions. While we define

the target population strictly based on publicly available information in the published paper,

those with more private knowledge may define different target populations.

To choose site-level variables, we again closely follow the original paper (see page 4 of the

original paper) and include eight moderators to diversify in SPS: regime type, freedom score,

corruption score, criminal justice score, crime rate, the number of police personnel, Gini index,

and GDP. These variables are selected by the original authors because they are theoretically

expected to moderate the effectiveness of community policing. For example, in countries with

higher levels of corruption, community policing that seeks to improve citizen-police relationships

might not be effective due to already low levels of trust in police.

We explicitly incorporate practical constraints. To approximate realistic restrictions on the

feasibility of experiments, we collected data on EGAP member countries and restricted SPS to

select sites only from those countries. If researchers have other practical constraints, such as

funding conditions or the availability of collaborators, they can incorporate such constraints as

well. We also include several stratification conditions: (a) we choose two countries from each of

the three regions, (b) we select at least two democracies and at least two autocracies, and (c) for
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Figure 5: SPS Site Selection for the Metaketa Experiment on Community Policing.
Note: For visual clarity, we standardized each variable.

the remaining variables, we select sites such that at least one selected site is above 1 standard

deviation and at least one selected site is below −1 standard deviation. These stratification

conditions further improve diversification by SPS.

SPS selected Bolivia, China, Liberia, Pakistan, South Africa, and Uruguay as six study

sites where two sites (Liberia and Pakistan) overlap with the original site selection. Figure 5

compares the distributions of the eight moderators among the target population of countries

in the Global South, the population of eligible sites that have EGAP members, and the SPS

site selection. Several points are worth noting. First, SPS diversifies all eight moderators well,

selecting countries with different regime types and with both low and high levels of criminal

justice and corruption. Second, the SPS site selection is properly restricted to the EGAP member

countries. For example, EGAP member countries do not include countries with extremely high or

low levels of criminal justice and corruption, and as a result, SPS diversifies site selection within

that constraint. This example illustrates how SPS selects diverse sites by effectively accounting

for practical constraints often faced by researchers. In Appendix A, we compare the SPS site

selection with the original site selection and show how SPS further improves diversity in site

selection.7

7Note that we cannot report the (subgroup) average-site ATE estimates from the newly
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6.3 Multi-County Field Experiments within the US

Gift and Gift (2015) conducted audit experiments in two US counties—one highly conservative

and one highly liberal—to examine partisan bias in hiring (see Section 2.1). In this example, we

illustrate how SPS can be used in combination with other site selection approaches, including

the conventional purposive sampling and convenience sampling. In particular, we choose two

additional sites complementary to the two sites selected by the original authors so that the four

sites in total will jointly cover diverse contexts. This shows how researchers can first select some

sites based on their choice of site selection methods—either theory-driven purposive sampling

or non-theory-driven site selection required by practical constraints, such as funding conditions

and availability of collaborators—and then use SPS to select remaining sites.

Based on the original paper, we begin by defining the target population of sites to be the US

counties that are either highly liberal or highly conservative (counties whose vote share for a single

party was greater than 60%, following the discussion in the original paper). To approximate the

realism and feasibility of the large-scale audit experiment, we also limit the target population

to counties with relatively large populations (at least 100K) and relatively high proportions of

entry-level jobs for college graduates (above the median).

We follow the original paper to choose five site-level variables: Democrat vote share, unem-

ployment rate, education level, population size, and rural population size. These variables are

discussed by the original authors as key site-level variables that are theoretically expected to

affect the extent of partisan bias. For example, we expect that partisan bias in hiring varies

with unemployment rates because hiring companies in counties with higher unemployment rates

are likely to have a bigger pool of applicants, which may lead companies to use partisanship for

weeding out applicants who are otherwise similar in qualifications (see page 664 of the original

paper).

We run SPS to select two additional sites to complement the original site selection. The goal

selected sites because the actual experiments were only conducted in the original six sites. When

site-specific causal estimates are available from our selected sites, researchers can estimate the

(subgroup) average-site ATE using our SPS estimator.
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Figure 6: SPS Site Selection for the Audit Experiment on Partisan Bias.
Note: We standardized each variable. SPS (the last row) includes two additional sites as well as
the original two sites.

is to select diverse study sites such that the two newly added sites can help researchers examine

different types of sites that were not in the original selection. By doing so, the four sites in total

will jointly cover a wide range of values in each site-level variable. As in other applications, to

improve diversity, we include stratification to make sure that at least one selected site is above

the 80th percentile and at least one selected site is below the 20th percentile of each variable.

SPS selected Blount County, TN, and Linn County, IA, to supplement the original site selec-

tion (Alameda County, CA, and Collin County, TX). Figure 6 compares the target population,

the original site selection, and the SPS selection (four sites, including the original two sites). The

original site selection diversified Democratic vote share and unemployment rate well, whereas

study sites mostly focused on counties in populated urban areas with high levels of education.

This original selection makes sense in establishing the first evidence of partisan bias in hiring.

SPS can help accumulate knowledge for external validity by selecting a more diverse set of coun-

ties. In particular, SPS selected two additional sites that are complementary to the original

site selection: two additional sites have lower proportions of people with Bachelor’s degrees

and smaller populations in more rural areas (see the third row in the figure). Combining them

with the original site selection, we can cover a wide range of values in each of the five site-level

variables.
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7 Practical Guides

In this section, we provide practical recommendations and discuss precautions and limitations.

7.1 Defining the Target Population of Sites

In the first step of SPS, researchers need to define a population of sites of theoretical interest. This

defines the target against which the external validity of a given substantive theory is evaluated.

From this target population, SPS purposively selects study sites. Specifying the target population

is similar to clarifying the studies’ scope conditions, and thus, this choice should be guided by a

given substantive research question.

Specification of the target population is essential because no causal finding is universally

externally valid (Egami and Hartman, 2023); a study in a completely different context should,

of course, return a different result. Therefore, explicit specification of the target population

helps researchers guard against over-generalization. Specifying the target population of sites is

important not only for SPS but also for any site selection approach that aims for better external

validity (Findley, Kikuta and Denly, 2020). While this step has been typically implicit in the

current practice of purposive sampling, our method makes this important step explicit.

In some settings, researchers might be interested in multiple sub-populations of sites rather

than one population of sites. For example, Gift and Gift (2015) might be interested in testing

whether the level of partisan bias differs across liberal and conservative counties in the US. In

such cases, we recommend researchers explicitly define two sub-populations of sites based on the

underlying theoretical mechanism—one for liberal and one for conservative counties.

7.2 Choosing Site-Level Variables

7.2.1 Avoid Including Irrelevant Variables

One of the benefits of SPS is that researchers can take into account a larger number of site-

level variables. However, we recommend against a kitchen sink approach of including too many

irrelevant variables because SPS might decrease the diversity in key site-level variables to improve

the diversity in such irrelevant variables. In Appendix F, we use simulation studies to illustrate
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that including too many irrelevant variables indeed increases mean squared errors. Thus, we

recommend researchers only include site-level variables that are substantively and theoretically

expected to moderate treatment effects across contexts, as suggested in Bassan-Nygate et al.

(2023).

7.2.2 How to Think about Unobserved Site-Level Variables

We clarify several points about how to reason about unobserved site-level variables.

SPS explicitly mitigates concerns about unobserved site-level variables compared to the cur-

rent practice of purposive sampling. First, while researchers often only diversify one or two

variables in current practice, users can include any number of site-level moderators in SPS based

on their domain and theoretical knowledge. Second, systematically diversifying observed site-

level variables can help diversify even unobserved site-level variables when many key site-level

variables are correlated. In addition, if unobserved variables are independent of observed site-

level variables, this does not lead to unobserved bias because the distribution of unobserved

variables will be the same in selected and non-selected sites, if we select sites only based on

observed variables. Therefore, SPS will make the potential influence of unobserved moderators

larger (compared to site selection without SPS) only when diversifying observed site-level vari-

ables somehow reduces the diversity of unobserved site-level variables, which requires users to

believe complicated nonlinear relationships between observed and unobserved variables.

While SPS can often mitigate concerns of unobserved site-level variables, it is recommended

to empirically assess the influence of unobserved moderators using site-level cross-validation (see

Section 5.1).

Finally, we emphasize that SPS focuses on the mean squared error and does not assume

the absence of unobserved moderators, so its theoretical guarantees are valid even if there exist

unobserved moderators. SPS can reduce the mean squared error further if users can include

more predictive moderators, but unobserved moderators do not invalidate the use of SPS.

7.3 Clarifications and Precautions

Combining SPS and Other Sampling Strategies. Researchers often have some domain

knowledge or practical constraints that are not directly captured by site-level variables. For
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example, some sites might be of substantive importance to a given literature, and researchers

might want to prioritize such substantively important sites. There are also practical (non-

theory-driven) reasons, e.g., when multiple researchers from different countries collaborate, each

investigator might need to include their own country of interest. One general approach to incor-

porate such additional information and constraints is to use SPS in combination with other site

selection approaches, such as classical purposive sampling and convenience sampling. Using Gift

and Gift (2015) as an example in Section 6.3, we illustrate how researchers can first select some

sites based on their choice of site selection methods—either theory-driven purposive sampling

or non-theory-driven site selection required by practical constraints, such as funding conditions

and availability of collaborators—and then use SPS to select remaining sites.

Agnostic Use of SPS. Researchers might not be explicitly interested in estimating the (sub-

group) average-site ATEs, and they might be only interested in selecting diverse sites with

transparency and flexibility. In such cases, the SPS algorithm can still be used as an agnostic

site selection approach to systematically diversify observed site-level covariates, while accommo-

dating logistical and ethical constraints. This type of scenario might be more common when

practical and ethical constraints are so severe that the target population of sites is not theoreti-

cally well motivated.

Site-Hacking. It is important to advise against “site-hacking,” i.e., re-running SPS until re-

searchers select sites that they prefer, while justifying site selection as if it were selected without

any additional constraint. For example, suppose researchers have local partners to run exper-

iments only in three unrepresentative locations, but to justify their site selection, they decide

to run SPS many times by post-hoc justifying different stratification conditions until it selects

the three sites and report such site selection, without clarifying their logistical constraints. SPS

should not be used for such site-hacking. Importantly, this risk exists even for random sampling

because researchers can re-run random sampling until they can select sites that they want. It is

recommended to transparently report practical constraints and optimally diversify site selection

within such constraints.

33



7.4 Limitations

SPS is not optimized for meta-regression. In multi-site causal studies, some researchers might be

interested in running meta-regression with site-level variables. While this question is crucial, it is

an even more difficult problem than estimating the average-site or the subgroup average-site ATE,

which is already more challenging than internal validity problems. When the number of study

sites is relatively small, as in political science, researchers have to estimate the effects of five site-

level variables using only six study sites, for example. Indeed, in areas where meta-regression

is more popular, e.g., psychology, education, and medicine, the number of included studies is

much larger and is about 65 on average (Tipton, Pustejovsky and Ahmadi, 2019), whereas only

13% of multi-site studies in political science have more than 10 sites. Given this data constraint,

most applications in political science have focused on the average-site and subgroup average-site

ATEs, as we do in this paper. When the number of study sites is large enough for reliable

meta-regression, SPS is still a useful approach to diversify covariates, but it is not an optimal

approach. For those interested in meta-regression, we refer readers to Tipton, Pustejovsky and

Ahmadi (2019).

8 Discussion

8.1 Connections to and Differences from Case Selection

While our focus is on quantitative studies, this paper also has important connections to the large,

influential literature on case selection in qualitative case studies (e.g., Lieberman, 2005; Gerring,

2006; Fearon and Laitin, 2008; Glynn and Ichino, 2016; Nielsen, 2016). The qualitative case

selection literature has developed a wide variety of sampling strategies, including typical, diverse,

and extreme case selection, among others (e.g., Seawright and Gerring, 2008). In particular, the

most common practice in multi-site quantitative studies is an instance of diverse case selection.

Thus, SPS can also be seen as a hybrid of ideas from the qualitative case selection literature

(purposive diverse sampling) and from the quantitative causal inference literature (synthetic

control method).

We also want to emphasize some key differences. First, in multi-site quantitative studies
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that we focus on, researchers often conduct confirmatory analyses (e.g., testing hypotheses or

estimating causal effects), and SPS is designed for such purposes. In contrast, in case studies,

the main goal might be exploratory analyses to generate new hypotheses or theories. Second, the

goal of site selection in multi-site quantitative studies is external validity because internal validity

analysis is conducted within each site. However, in some case studies, researchers compare cases

to make causal, internally valid claims by using case selection methods for internal validity (e.g.,

most similar and most different case selection).

8.2 Other Dimensions of External Validity

Even though we focus on the external validity question about contexts, we emphasize the im-

portance of other dimensions of external validity, such as treatments, outcomes, and populations

(Findley, Kikuta and Denly, 2020; Egami and Hartman, 2023). In particular, recent papers

emphasize issues such as sample representativeness (Mullinix et al., 2015; Coppock, Leeper and

Mullinix, 2018), measurement harmonization (Slough and Tyson, 2022; Wilke and Samii, 2023),

and the consequence of realistic and abstract treatments in survey experiments (Brutger et al.,

2020).

Importantly, SPS can be useful for incorporating purposive variations in these other dimen-

sions as well. For example, researchers can use SPS to select a set of treatments by diversifying

implementation details, such as the program delivery model in field experiments (e.g., expert or

volunteer canvassers) and the level of abstraction in survey experiments (e.g., use the real-world

or hypothetical actors in vignettes).

9 Concluding Remarks

How should we select study sites for external validity? This has been a fundamental research

design question for decades. For many quantitative social scientists, this question of site selection

has recently become even more essential as an increasing number of scholars use multi-site causal

studies to address external validity concerns about contexts (recall Figure 1).

This paper offers a new methodological foundation to design such increasingly popular, multi-

site causal studies. SPS is a general method to select diverse sites for external validity in a wide
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range of applications. SPS can be used to select different types of sites, such as countries

(for multi-country studies), cities, districts, states, and schools (for multi-site studies within a

country). In general, SPS can be useful for selecting sites and cases when random sampling is

infeasible due to practical constraints or ineffective due to the small number of sites researchers

can select, which has been the case in most multi-site studies in political science. Researchers

can implement all of the proposed methods with R package spsR.

Given the inherent difficulty and importance of external validity, no single approach can

address all the concerns about external validity. However, we agree with many scholars that

multi-site causal studies will continue to be one of the most promising, powerful strategies to

address external validity concerns about contexts, and there are many valuable opportunities for

scholars to develop and improve methodologies for multi-site studies. We hope that the proposed

method in this paper can provide a useful foundation for future work.
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A Additional Empirical Applications

A.1 Multi-Country Survey Experiments: Lupu and Wallace (2019)

Lupu and Wallace (2019) examine conditions under which individuals are more likely to approve of

human rights abuses by their governments. The original authors theorize that the approval rate varies

by contexts involving the level of violence by both the government and the opposition as well as

international legal constraints. The authors test their theory through multi-country survey experiments

in India, Israel, and Argentina.

We use this example to demonstrate how researchers can optimally select study sites under a prac-

tical constraint common in multi-country survey experiments, i.e., accounting for the feasibility of

conducting an online survey in each country.

A.1.1 Defining the Target Population

We closely follow the original paper to define the target population. First, the original authors selected

all democratic countries where the levels of public approval of government are relatively more salient

(Lupu and Wallace, 2019, p. 418). Second, the selected sites all have experienced significant opposition

movements that are both violent and non-violent—an important condition in order for respondents

to view the survey to be more realistic. Lastly, since one of the treatment factors was related to

the government’s compliance with international law, a country’s relationship with international human

rights institutions had to be salient in study sites. In the original paper, this concept was captured

by whether countries joined the International Covenant on Civil and Political Rights (ICCPR) treaty.

Based on these discussions in the original paper, we define the target population to be democratic

countries that have experienced at least one opposition movement since 1970 and that have signed the

ICCPR. The target population includes 58 countries in total: 16 in Americas, 18 in Europe, 15 in

Africa, and 9 in Asia.

A.1.2 Choosing Site-Level Variables

We again follow the original authors’ discussion on differences across the selected sites that potentially

account for variation in attitudes toward law and violence. In particular, we choose the following seven

site-level variables: polity score, civil liberty index, opposition group size, ethnic opposition group

presence, population size, and the total number of treaties ratified out of the 18 human rights treaties

under international law. The first two variables measure the extent to which democratic principles

and civil liberty are respected in a given country, hence capturing varying levels of public approval of

government and its saliency. The next two variables capture the predominance of opposition movement

across all groups as well as ethnic groups in particular. These variables capture different relationships

the government has with the opposition groups and, therefore, account for heterogeneity in the effect

of the opposition movement on public approval. Population size is included to account for variations in

demographic settings influencing the salience of government actions. The ratification of the international

human rights treaties measures a country’s compliance with international law, a key variable capturing

baseline national attitude towards international institutions.
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A.1.3 Stratification

Importantly, to capture practical concerns faced by researchers in an online survey setting, we in-

corporated practical constraints that researchers cannot run survey experiments in every country. In

particular, we collected a list of countries where an online survey service is offered by four major survey

platforms—Amazon Mechanical Turk, Lucid (now Cint), YouGov, and Dynata. We then restricted SPS

to select sites only from these limited list of countries where online surveys are viable. This shows how

researchers can use SPS to effectively incorporate practical constraints.

To improve diversification, we use stratification conditions: (a) For all but two variables, we select

at least one site below the 25th percentile values, at least one site above the 75th, and at least one site

between the 25th and 75th percentile values. (b) Due to the extreme asymmetry in the distributions of

human rights treaties ratification as well as the size of ethnic opposition movement, we applied different

stratification conditions to these two variables. Specifically, for the ratification measure, we used a

stratification condition such that at least one selected site is below -1 and at least one selected site is

above 1 standard deviation from the mean. Similarly, for the size of ethnic opposition movement, we

use a stratification condition such that at least one selected site is below -0.5, at least one selected site

is above 0.5, and at least one selected site between -0.5 and 0.5 standard deviation from the mean.

As in this application, when the distribution of site-level variables is skewed, it is recommended to

change stratification conditions flexibly for each variable in order to account for different patterns in

each variable.

A.1.4 Site Selection

Given the practical constraints and stratification conditions specified above, we select three study sites,

which is the same number of sites selected in the original paper. Specifically, SPS selected Bolivia,

Kenya, and Lithuania as three study sites. Figure OA-1 shows the distribution of each site-level

variable for the target population (gray), eligible countries where services are offered by the four survey

providers (blue), sites selected by the original authors (green), and sites selected by SPS (orange).

Several points are important. First, as specified by our practical constraint, the SPS site selection

comes only from eligible countries. Second, we find that the sites selected by SPS cover a wider range

of values in each of the site-level variables, especially for the opposition size, and the presence of ethnic

opposition movement. For other variables, SPS is able to maintain similar or slightly better diversity

than the original site selection.

The history of opposition movements against government regimes, and the government’s responses,

in Lithuania, Bolivia, and Kenya differ in several ways. In Lithuania, the opposition has largely been

driven by political and social dissatisfaction, often channeled through peaceful protests and civil society

organizations. The government has generally responded with a degree of tolerance for dissent, reflecting

Lithuania’s democratic institutions and respect for freedom of speech (Freedom House, 2022; U.S.

Department of State, 2022c). In Bolivia, opposition movements have been marked by significant social

and ethnic divisions. The country has experienced periods of political turmoil, including the ousting

of Evo Morales in 2019, and the government has sometimes responded with force (U.S. Department

of State, 2022a). In Kenya, brutality by government forces is a serious problem. Kenya has faced

opposition movements related to both political and ethnic issues, often centered around contested
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Figure OA-1: Site Selection for Lupu and Wallace (2019). Note: We compare the distribution

of site-level variables among the target population (the first row), the eligible population (the second),

the original selection (the third), and the SPS site selection (the fourth).

elections where the government often used excessive force to respond to the movement particularly

when it is related to anti-government protests (U.S. Department of State, 2022b).

A.2 Multi-Context Observational Study: Bisbee et al. (2017)

In an influential observational study, Bisbee et al. (2017) examine the local average treatment effect

(LATE) of fertility on labor supply using the same sex of the first two children as an instrumental

variable (IV) based on the original design from Angrist and Evans (1998). The primary goal of this

research is to assess the extent to which the quasi-experimental evidence on this effect found in a

small number of countries in the previous literature—the US, Mexico, Argentina, and Taiwan—can be

generalized to broader contexts. To do so, the original authors estimated the LATE of fertility on labor

supply using exactly the same strategy in a wide range of countries over time, covering more than 40

countries over 50 years.

We will use this paper as an example to illustrate how researchers can also use SPS for observational

studies. Similarly to how we used Naumann et al. (2018), we will conduct an empirical validation study

based Bisbee et al. (2017). In particular, we pretend that we can only select a subset of sites that

the original authors could actually study and then validate whether we can recover the benchmark

estimate of the average-site ATE. We will use SPS to select 9 sites out of 45 sites and then estimate the

average-site ATE of all 45 sites. Because the original authors used the instrumental variable method

to estimate causal effects in all 45 sites, we can compare our SPS estimate based only on 9 sites to the

actual quasi-experimental benchmark estimate. By doing so, we can simultaneously test the real-world

performance of the method and illustrate the use of the proposed SPS step-by-step.
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A.2.1 Defining the Target Population

To perform an empirical validation study, we start from the original authors’ data set with 118 country-

year pairs, containing 46 unique countries across the world—9 from Africa, 14 from Americas, 13 from

Asia, and 10 from Europe. For reliable empirical validation, we remove pairs that have estimated LATEs

with extremely large standard error values due to the problem of weak IV (e.g., Uganda in 2002 with a

standard error over 2500; see Appendix A1 of Bisbee et al., 2017). In particular, we remove estimates

from pairs with standard errors greater than 2, which removes 7 pairs of estimates resulting in 45 unique

countries. In this empirical validation, we use the 45 unique countries as our target population. The

site-specific ATE is defined as the average effect within each country, averaging over time.

A.2.2 Choosing Site-Level Variables

We closely follow the country-level covariates included by the original authors: GDP per capita, female

labor force participation, the sex ratio imbalance (male births per female births minus 0.5), and the total

fertility rate. The first two variables capture the economic activity in each country that may influence

the treatment effects. Furthermore, the original authors mention that the most significant negative IV

estimates are among countries with higher levels of female labor force participation, indicating that the

existing labor activity by women contributes to heterogeneity in the effect of fertility on labor supply.

The third variable measures potential gender bias present in each country that is likely to capture the

variation in treatment effects between different genders of mothers’ first two children. The last variable

is also a key variable capturing the baseline level of instrumental variable: The decision to have a third

child based on preferences for sex heterogeneity is clearly less salient in countries where most families

have more than three children.

In addition to the four variables discussed by the original authors, we also include two more variables

that measure population size and education attainment. Population size functions in a similar manner

as the total fertility rate in a sense that mothers in overly populated countries may behave differently

than those in under-populated countries in terms of family planning. Education level is likely to capture

the baseline level of employment rate. The original authors in fact include the education level for both

mothers and spouses from the individual-level data set and find that complier mothers are more educated

than the overall samples.

A.2.3 Stratification and Site Selection

In this application, we stratify our site selection such that at least two countries are selected from each

of the four regions: Africa, Americas, Asia, and Europe. To showcase how researchers can combine the

classical purposive sampling and SPS, we first select the United States (the most well-studied country

in this topic) based on substantive importance and then select the remaining eight sites using SPS

such that the nine sites jointly cover a wide range of values in each site-level variable we specify above.

Finally, to further improve diversity, for each variable, we include stratification conditions such that

we select at least two sites below the 20th percentile, at least two sites between the 40th and 60th

percentiles, and at least two sites above the 80th percentile. SPS selected the following countries:

Belarus, Chile, Costa Rica, India, Jordan, Rwanda, Spain, Uganda, and the United States. Figure

OA-2 visualizes the result of SPS. We observe that SPS successfully diversified each variable, covering

sites with smaller, closer to the mean, and larger values within each covariate.
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Figure OA-2: Site Selection for Bisbee et al. (2017).

A.2.4 Empirical Validation

Figure OA-3 shows the results of the site-specific LATEs in the selected sites (left panel), the average-site

LATE (black coefficient plot in the right panel), as well as the benchmark estimate from all 45 countries

(red coefficient plot in the right panel). Several points are worth discussing. First, as in the original

paper, due to different strength of instrument across countries, we see that standard errors of site-specific

LATEs differ widely across sites. Second, and most impotantly, we find that the point estimate from the

proposed SPS based only on 9 countries closely resembles the benchmark estimate from all 45 countries

and is within the 95% confidence interval. Finally, to assess the potential influence of unobserved

confounders, we use the site-level cross-validation as recommended in the paper. The estimated p-value

is over 0.99, and we did not find evidence for significant bias from unobserved confounders, which is

consistent with our comparison against the benchmark estimate above.
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Figure OA-3: Site-Specific LATEs (left panel) and Average-Site LATE (right panel).
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A.3 Metaketa Multi-Country Experiments: Blair et al. (2021)

In Section 6.2 of the main paper, we use Blair et al. (2021) and show how to use SPS to select diverse

study sites within practical constraints. Here, we clarify how the SPS site selection differs from the

original site selection.

Before we start, we clarify several key points. First, while we tried to approximate the target

population and practical constraints based on public information in the published paper, the original

authors had more private domain information and various logistical constraints that we could not

incorporate. Therefore, our empirical application in Section 6.2 and in this section is not an evaluation

or criticism of the original site selection. The only goal is to show how SPS can be effectively used in

settings similar to the Metaketa study. Second, and most importantly, in future studies, researchers

can incorporate any logistical constraints and domain knowledge (including constraints and theoretical

considerations that were not explicitly documented in the original paper) explicitly in SPS, and thus,

researchers designing the Metaketa experiments can also use SPS to further improve the transparency

of the site selection process.

With this caveat, we now compare the SPS site selection and the original site selection in Figure OA-

4. Several points are worth noting. First, the original site selection did diversify many key variables

(e.g., crime rates, the number of police personnel) successfully, while they mostly focused on countries

with lower levels of criminal justice and higher levels of corruption even within the Global South.1

SPS diversified all eight variables successfully. Especially for the first four variables in Figure OA-4

(regime type, freedom score, criminal justice, and corruption), SPS significantly improved diversification

compared to the original site selection. For the remaining four variables, we maintain the high level of

diversity as in the original site selection.
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Figure OA-4: Site Selection for Blair et al. (2021). Note: We compare the distribution of site-level

variables among the target population, the eligible population, and the original and SPS site selection.

1This site selection might make sense if the target population focuses only on countries in the Global South that have

low levels of criminal justice and high levels of corruption.
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A.4 Summaries of Site-Level Variables

In this section, we report the summary statistics of site-level variables for the two empirical applications

in the paper. They show how SPS effectively diversify all the chosen variables within user-specified

constraints.

Table OA-1: Multi-Country Survey Experiments: Naumann et al. (2018)

Site GDP per capita Migrant Stock Unemployment Fiscal Support Respondent Respondent

(PPP in US$) (% of population) (% of labor force) Exposure for Immigration Age Education

Selected Sites

Sweden 45,297 14.76 8.05 1 4.01 49.85 2.84

Denmark 45,999 9.18 7.38 0 3.41 48.33 2.76

Spain 33,637 13.48 26.09 0 3.27 49.32 2.30

Switzerland 59,535 26.50 4.75 0 3.44 48.04 2.52

Czech Republic 31,187 3.79 6.95 1 2.28 46.70 2.68

UK 40,227 12.13 7.52 0 2.76 53.37 2.53

Min 31,187 3.79 4.75 0 2.28 46.70 2.30

Median 42,762 12.80 7.45 0 3.34 48.83 2.60

Mean 42,647 13.31 10.12 0.33 3.20 49.27 2.61

Max 59,535 26.50 26.09 1 4.01 53.37 2.84

Target Population

Min 30,405 3.79 3.42 0 2.28 46.70 2.30

Median 45,297 12.13 7.52 0 3.27 49.49 2.68

Mean 44,498 12.34 8.83 0.40 3.22 49.43 2.65

Max 65,705 26.50 26.09 1 4.01 53.37 2.90

Non-Selected Sites

Min 30,405 4.62 3.42 0 2.95 47.47 2.33

Median 46,393 11.43 8.19 0 3.13 49.82 2.70

Mean 45,733 11.70 7.96 0.44 3.24 49.53 2.67

Max 65,705 15.82 13.73 1 3.71 52.06 2.90

Note: Immigration Support is measured as the weighted average of sum of six scaled immigration attitude variables in

the previous wave of European Social Survey (ESS). Age and Education represent average values among respondents

in the author’s original data.
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Table OA-2: Metaketa Multi-Country Experiments: Blair et al. (2021)

Site Regime Freedom Corruption Criminal Justice Crime Rate Police Personnel Gini GDP

Type Score Index Index (per 100K population) (per 100K population) Coefficient (in 1M US$)

Selected Sites

Bolivia 3 66 0.27 0.22 315.93 280.57 43.60 36,629

China 0 9 0.53 0.45 129.22 557.83 37.10 14,687,743

Liberia 6 60 0.32 0.31 87.09 176.51 35.30 3,039

Pakistan 3 37 0.31 0.35 22.78 203.12 29.60 300,425

Uruguay 9 96 0.73 0.56 573.94 590.26 40.20 53,666

South Africa 6 79 0.48 0.53 888.71 563.76 63 337,619

Min 0 9 0.27 0.22 22.78 176.51 29.60 3,039

Median 4.50 63 0.40 0.40 222.57 419.20 38.65 177,046

Mean 4.50 57.83 0.44 0.41 336.28 395.34 41.47 2,569,854

Max 9 96 0.73 0.56 888.71 590.26 63 14,687,743

Target Population

Min 0 1 0.16 0.13 4.85 117.33 26 1,431

Median 3 37 0.40 0.36 100.01 304.98 38.60 37,605

Mean 3.50 40.31 0.42 0.40 182.80 342.70 39.98 282,715

Max 9 96 0.91 0.79 917.69 1, 141.61 63 14,687,743

Eligible Population

Min 0 1 0.26 0.22 22.78 117.33 26 3,039

Median 3 59 0.41 0.38 102.99 289.29 39.50 121,347

Mean 3.96 53.60 0.43 0.41 227.29 322.20 40.53 891,954

Max 9 96 0.80 0.67 917.69 881.14 63 14,687,743

Non-Selected Sites

Min 0 1 0.16 0.13 4.85 117.33 26 1,431

Median 3 36 0.40 0.36 97.71 304.98 38.60 35,432

Mean 3.43 39.25 0.42 0.39 173.50 339.51 39.89 144,101

Max 9 94 0.91 0.79 917.69 1, 141.61 59.10 2,671,595

Note: Regime Type is an ordinal variable measuring the political regime ranging from 0 (closed autocracy) to 9

(liberal democracy).

Table OA-3: Multi-County Field Experiments within the US: Gift and Gift (2015)

Site Democratic Vote Share Population Rural Residency Unemployment Bachelor Degree

(% of total votes) (% of population) (% of labor force) (% of population)

Selected Sites

Alameda County, CA 0.79 1,510,271 0.004 0.11 0.23

Linn County, IA 0.60 211,226 0.13 0.06 0.20

Blount County, TN 0.30 123,010 0.33 0.09 0.12

Collin County, TX 0.37 782,341 0.05 0.07 0.31

Min 0.30 123,010 0.004 0.06 0.12

Median 0.48 496,783 0.09 0.08 0.21

Mean 0.51 656,712 0.13 0.08 0.21

Max 0.79 1,510,271 0.33 0.11 0.31

Target Population

Min 0.13 100,157 0 0.04 0.09

Median 0.61 246,310 0.12 0.09 0.18

Mean 0.54 540,435 0.15 0.09 0.19

Max 0.92 9,818,605 0.56 0.17 0.35

Non-Selected Sites

Min 0.13 100,157 0 0.04 0.09

Median 0.61 246,310 0.12 0.09 0.18

Mean 0.54 537,491 0.15 0.09 0.19

Max 0.92 9,818,605 0.56 0.17 0.35

Note: Democratic Vote Share represents a share of votes received by a Democratic candidate in the 2008 presidential

election.
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Table OA-4: Multi-Country Survey Experiments: Lupu and Wallace (2019)

Site Polity Civil Liberty Opposition Group Opposition Ethnic UN Population

Score Index Index Group Index Ratification (in 1,000s)

Selected Sites

Bolivia 7 0.85 -0.23 0 18 11,090

Kenya 9 0.68 1.81 0.78 8 46,851

Lithuania 10 0.94 -2.31 0.29 16 2,904

Min 7 0.68 -2.31 0 8 2,904

Median 9 0.85 -0.23 0.29 16 11,090

Mean 8.67 0.82 -0.24 0.35 14 20,282

Max 10 0.94 1.81 0.78 18 46,851

Target Population

Min 5 0.64 -3.49 0 5 330

Median 8.50 0.88 -0.47 0.14 14 11,323

Mean 8.17 0.86 -0.37 0.20 14.03 58,149

Max 10 0.96 2.27 1 18 1,322,866

Eligible Population

Min 5 0.64 -3.49 0 5 330

Median 9 0.89 -0.79 0.14 14 17,033

Mean 8.61 0.86 -0.70 0.18 14.25 74,247

Max 10 0.96 2.27 0.78 18 1,322,866

Non-Selected Sites

Min 5 0.64 -3.49 0 5 330

Median 8 0.88 -0.47 0.14 14 11,557

Mean 8.15 0.86 -0.37 0.19 14.04 60,215

Max 10 0.96 2.27 1 18 1,322,866

Note: Opposition Group Index measures the size opposition actors to the current political regime. Opposition

Ethnic Group Index measures the size of active racial/ethnic group that mobilize against the political regime. UN

Ratification refers to the total number of treaties ratified by a country out of the 18 human rights treaties under

international law.
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Table OA-5: Multi-Context Observational Study: Bisbee et al. (2017)

Site GDP per capita Female Labor Force Sex Ratio Fertility Rate Female Educational Population

(in US$) (% female adult population) Imbalance (per woman) Attainment (in 1,000s)

Selected Sites

Belarus 5,678 0.82 0.52 1.76 65.54 10,026

Chile 5,901 0.31 0.51 2.61 33.37 12,584

Costa Rica 7,625 0.34 0.51 2.74 31.92 3,069

India 1,398 0.31 0.54 2.70 37.21 875,081

Jordan 3,946 0.27 0.52 4.12 39.79 5,532

Rwanda 731 0.92 0.50 3.39 12.66 8,372

Spain 23,524 0.56 0.52 2.01 39.75 39,897

Uganda 582 0.68 0.50 3.09 6.22 18,171

United States 27,324 0.62 0.51 2.16 80.28 236,553

Min 582 0.27 0.50 1.76 6.22 3,069

Median 5,678 0.56 0.51 2.70 37.21 12,584

Mean 8,523 0.54 0.51 2.73 38.53 134,365

Max 27,324 0.92 0.54 4.12 80.28 875,081

Target Population

Min 582 0.13 0.50 1.72 4.98 1,897

Median 4,778 0.58 0.51 2.74 33.25 15,404

Mean 7,804 0.57 0.51 2.74 38.05 69,779

Max 32,269 0.92 0.54 4.63 89.97 1,070,038

Non-Selected Sites

Min 726 0.13 0.50 1.72 4.98 1,897

Median 4,680 0.61 0.51 2.87 32.21 16,361

Mean 7,624 0.57 0.51 2.74 37.93 53,633

Max 32,269 0.92 0.53 4.63 89.97 1,070,038

Note: Sex Ratio Imbalance is measured as the number of male children divided by the number of female children

minus 0.5. Female Educational Attainment is measured as the share of female population ages 25+ with at least

lower secondary education.
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B Introduction to R Package

In this section we provide a brief introduction to our companion R package spsR. We demonstrate the

use of functions in the package using the empirical application of Naumann et al. (2018) described in

the main manuscript.

We begin with the data set of seven site-level variables collected for the target population of 15

European countries included in the original study.

As recommended in Section 7, researchers can include stratification conditions to improve diversity.

To do so, users can rely on the function stratify sps(). As described in the main manuscript, we

apply a stratification for all but fiscal exposure variables such that the SPS selects at least one site

below the 20th percentile, at least one site between the 40th and 60th percentile, and at least one

site above the 80th percentile. Users can use loop to apply the same stratification condition for every

variable. For the binary measure of fiscal exposure, we apply stratification such that the SPS selects at

least one country with a value of 1 and one country with a value of 0.

Given the data and user-specified stratification conditions, users can run the function sps() to

perform SPS. Note that, if users do not want to include any stratification condition, they can simply
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run the function sps() without specifying the argument stratify below.

Selected sites are stored in an object called selected sites:

Users can also visualize the SPS selection along with the distribution of site-level variables using

the function sps plot():
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Next, once the studies are conducted and the treatment effects are estimated in the selected sites,

users can combine the results to estimate the average-site ATE:

Using the estimated ATEs in selected sites, users can run the function sps estimator() to estimate

the average-site ATE:

Users can run plot to visually compare the average-site ATE against the site-specific ATEs:
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Users can also estimate the subgroup average-site ATEs for each subgroup of interest using the same

function:

Site−Specific ATEs Subgroup Average−Site ATE
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Lastly, users can perform the site-level cross-validation as described in the main manuscript using

the function sps cv():
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C Practical Guides on Collecting Site-Level Data

SPS requires site-level data to explicitly diversify site-level variables. In this section, we provide in-

formation on publicly available data that researchers may collect to perform SPS in a wide range of

settings.

First, the majority of multi-site studies published to this date are conducted at the country-level.

Specifically, across all 133 multi-site studies we analyzed (see Appendix D), 69% are multi-country stud-

ies. We emphasize that there exists ample amount of country-level data sets that are publicly available:

a number of international organizations collect comprehensive measures of country’s demographic, so-

cial, economic, and political indicators (e.g., UN Data, World Bank, WHO). A number of non-profit

organizations and research institutes also collect a specialized set of measures at the country-level (e.g.,

V-Dem, Freedom House, World Justice Project) and an increasing number of academic groups are

making collective efforts towards compiling a unique set of cross-country data for topics including, but

not limited to, anti-government movement (NAVCO Data Project, Carnegie Global Protest Tracker)

and UN General Assembly voting data (Voeten et al., 2009). Furthermore, there exists public opin-

ion survey data at both regional and global level (e.g., Gallup World Poll, European Social Survey,

Eurobarometer, Afrobarometer, Americas Barometer, Asian Barometer). These measures are easily

retrievable online via a direct download and many of the providers also offer API. Lastly, to facilitate

the ease of cross-country data collection, our open-source R package spsRdata provides a country-level

data set for 179 countries between 2010 and 2022, which includes a wide collection of relevant political,

economic, and demographic indicators from V-Dem and the World Bank.

The next most prominent location in which multi-site studies are conducted is the United States.

In particular, for the remaining 31% of the multi-site studies we analyzed (that are not multi-country),

we find that 68% of them are conducted in the United States at the state (68% of multi-site studies

in the United States), city (18%) or county (11%) level. Public data on United States abound, in-

cluding government sources (Census of Governments, U.S. Bureau of Labor Statistics, FBI Uniform

Crime Reporting), public opinion surveys (e.g., ANES, CCES, GSS), and an array of specific indica-

tors developed by research institutes and advocacy groups including, but not limited to, election data

and various social indicators (e.g., MIT Election Lab, ICPSR, ACLED). Furthermore, many of the

replication materials from prior academic research conducted in the U.S. provides unique measures not

commonly found elsewhere (e.g., Harvard Dataverse, de Benedictis-Kessner et al., 2022).

For multi-site studies outside of the U.S., the country of interest often has statistics provided by the

government as well as country-specific survey data available online. For example, Blair et al. (2021)

collect data on police capacity from the selected countries’ Census data as well as government annual

reports. Lyall et al. (2015) use village-level data conducted by Opinion Research Center of Afghanistan

(ORCA), an Afghan-owned firm that recruits its enumerators from sampled and neighboring villages.

15

https://data.un.org/
https://databank.worldbank.org/source/world-development-indicators
https://www.who.int/data/gho/info/gho-odata-api
https://v-dem.net/data/the-v-dem-dataset/
https://freedomhouse.org/
https://worldjusticeproject.org/rule-of-law-index/?gclid=CjwKCAjwv-2pBhB-EiwAtsQZFDRpJ_4oYGB_iuivpRbTkAJ1Yrwj-U3OKyTZr1IBqxfVUZ1W5qyALhoClikQAvD_BwE
https://dataverse.harvard.edu/dataverse/navco
https://carnegieendowment.org/publications/interactive/protest-tracker
https://www.gallup.com/analytics/318923/world-poll-public-datasets.aspx
https://www.europeansocialsurvey.org/
https://europa.eu/eurobarometer/
https://www.afrobarometer.org/
https://www.vanderbilt.edu/lapop/
https://www.asianbarometer.org/
https://www.census.gov/programs-surveys/cog.html
https://www.bls.gov/
https://www.fbi.gov/how-we-can-help-you/more-fbi-services-and-information/ucr
https://www.fbi.gov/how-we-can-help-you/more-fbi-services-and-information/ucr
https://electionstudies.org/
https://cces.gov.harvard.edu/
https://gss.norc.org/
https://electionlab.mit.edu/
https://www.icpsr.umich.edu/web/pages/
https://acleddata.com/2020/09/03/demonstrations-political-violence-in-america-new-data-for-summer-2020/
https://dataverse.harvard.edu/


D Literature Review of Multi-Site Causal Studies

D.1 Literature Review Procedure

To evaluate the current practice of multi-site research, we conducted a review of academic articles

published in the top 10 political science journals: American Political Science Review (APSR), American

Journal of Political Science (AJPS), Journal of Politics (JOP), Political Behavior (PB), Quarterly

Journal of Political Science (QJPS), British Journal of Political Science (BJPS), Comparative Political

Studies (CPS), World Politics (WP), International Organization (IO), and Journal of Experimental

Political Science (JEPS). These journals represent a group of highly cited and influential journals in

political science. For example, these 10 journals together have total citations of over 7,800 on average as

compared to the 1,315 average total citation counts across all academic journals in the field of political

science. Furthermore, the 5-year journal impact factor among these 10 journals is 5.8 on average, more

than twice as large as the average score across all political science journals.2

D.1.1 Multi-Site Experiments

To assess the current practice of multi-site experimental studies, we first searched for all articles pub-

lished in the years 2000 through 2022 (inclusive) using a keyword “experiment” in Web of Science, which

returned a total of 1,337 articles. We then classified whether the experiment discussed in each article is

a multi-site study using a two-step approach combining GPT-labeling and experts-manual-verification.

First, we used GPT to label each article as a multi-site experimental study based on the article abstract.

To increase accuracy, we used few-shot learning by inserting six abstracts and corresponding answers

prior to providing an abstract of interest. GPT classified a total of 147 articles as a multi-site experi-

ment. In the second step, we then manually coded the 147 articles that were labeled as a multi-site by

GPT as well as a random selection of 146 articles that were labeled as a non-multi-site by GPT. In this

verification step, we coded a total of 111 articles as multi-site out of the 293 articles reviewed: 97 out

of the 147 articles labeled as a multi-site experiment by GPT were verified as such, and 14 out of the

146 articles labeled as a non-multi-site experiments by GPT were verified as a multi-site by our manual

correction.

Importantly, all studies we review below are manually verified to be multi-site experiments. This

means that the number of multi-site experiments we report is likely the lower bound of the true number

of multi-site studies that exist during the time frame we examine.

Tables OA-6 through OA-8 show a full list of articles that conduct multi-site experiments in field,

survey, and laboratory settings, respectively. Note that articles may be listed more than once if multiple

types of experiments were conducted (e.g., Findley et al. (2017) conduct both field and survey multi-site

experiments).

2These values are based on a total of 307 political science journals recorded in the Journal Citation Reports provided

by Web of Science.
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Table OA-6: Multi-site Survey Experiments

N Author (Year; Journal) Title

1 Bruter (2009; CPS) Time Bomb? The Dynamic Effect of News and Symbols on the Political Identity of European Citizens

2 Turgeon (2009; PB) ’Just Thinking:’ Attitude Development, Public Opinion, and Political Representation

3 Johns and Davies (2012; JOP) Democratic Peace or Clash of Civilizations? Target States and Support for War in Britain and the United States

4 Lu et al. (2012; AJPS) Inequity Aversion and the International Distribution of Trade Protection

5 Lyall et al. (2013; APSR) Explaining Support for Combatants during Wartime: A Survey Experiment in Afghanistan

6 Tomz and Weeks (2013; APSR) Public Opinion and the Democratic Peace

7 Aaroe and Petersen (2014; JOP) Crowding Out Culture: Scandinavians and Americans Agree on Social Welfare in the Face of Deservingness Cues

8 Ocantos et al. (2014; AJPS) The Conditionality of Vote-Buying Norms: Experimental Evidence from Latin America

9 Jonge and Nickerson (2014; PB) Artificial Inflation or Deflation? Assessing the Item Count Technique in Comparative Surveys

10 Mccauley (2014; APSR) The Political Mobilization of Ethnic and Religious Identities in Africa

11 Bloom et al. (2015; APSR) Religious Social Identity, Religious Belief, and Anti-Immigration Sentiment

12 Lyall et al. (2015; JOP) Coethnic Bias and Wartime Informing

13 Carnes and Lupu (2016; APSR) Do Voters Dislike Working-Class Candidates?

14 Lu and Scheve (2016; CPS) Self-Centered Inequity Aversion and the Mass Politics of Taxation

15 Zink and Dawes (2016; PB) The Dead Hand of the Past? Toward an Understanding of Constitutional Veneration

16 Bechtel and Scheve (2017; JEPS) Who Cooperates? Reciprocity and the Causal Effect of Expected Cooperation in Representative Samples

17 Findley et al. (2017; JOP) External Validity in Parallel Global Field and Survey Experiments on Anonymous Incorporation

18 Gschwend et al. (2017; JOP) Weighting Parties and Coalitions: How Coalition Signals Influence Voting Behavior

19 Laustsen (2017; PB) Choosing the Right Candidate

20 Soroka et al. (2017; JEPS) Ethnoreligious Identity, Immigration, and Redistribution

21 Wright et al. (2017; CPS) Multiculturalism and Muslim Accommodation: Policy and Predisposition Across Three Political Contexts

22 Auerbach and Thachil (2018; APSR) How Clients Select Brokers: Competition and Choice in India’s Slums

23 Carlin and Love (2018; BJPS) Political Competition, Partisanship and Interpersonal Trust in Electoral Democracies

24 Sheffer et al. (2018; APSR) Nonrepresentative Representatives: An Experimental Study of the Decision Making of Elected Politicians

25 Lee (2019; CPS) The Revival of Charisma: Experimental Evidence From Argentina and Venezuela

26 Bisgaard (2019; AJPS) How Getting the Facts Right Can Fuel Partisan-Motivated Reasoning

27 Frye et al. (2019; WP) Vote Brokers, Clientelist Appeals, and Voter Turnout: Evidence from Russia and Venezuela

28 Lupu and Wallace (2019; AJPS) Violence, Nonviolence, and the Effects of International Human Rights Law

29 Kenan and Zohlnhoefer (2019; PB) Policy and Blame Attribution: Citizens’ Preferences, Policy Reputations, and Policy Surprises

30 Valentino et al. (2019; BJPS) Economic and Cultural Drivers of Immigrant Support Worldwide

31 Chen and MacDonald (2020; JEPS) Bread and Circuses: Sports and Public Opinion in China

32 Chilton et al. (2020; BJPS) Reciprocity and Public Opposition to Foreign Direct Investment

33 Goerres et al. (2020; BJPS) What Makes People Worry about the Welfare State? A Three-Country Experiment

34 Jensen and Rosas (2020; JEPS) Open for Politics? Globalization, Economic Growth, and Responsibility Attribution

35 Mutz and Lee (2020; APSR) How Much is One American Worth? How Competition Affects Trade Preferences

36 Tomz and Weeks (2020; JOP) Human Rights and Public Support for War

37 Tomz et al. (2020; IO) Public Opinion and Decisions About Military Force in Democracies

38 Avdagic and Savage (2021; BJPS) Negativity Bias

39 Pereira (2021; PB) Do Female Politicians Face Stronger Backlash for Corruption Allegations?

40 Blais and Vallve (2021; PB) Conformity and Individuals’ Response to Information About Aggregate Turnout

41 Bush and Zetterberg (2021; AJPS) Gender Quotas and International Reputation

42 Dellmuth and Tallberg (2021; BJPS) Elite Communication and the Popular Legitimacy of International Organizations

43 Doces and Wolaver (2021; PB) Are WeAllPredictably Irrational? An Experimental Analysis

44 Edwards and Arnon (2021; BJPS) Violence on Many Sides: Framing Effects on Protest and Support for Repression

45 Freire et al. (2021; JEPS) Institutional Design and Elite Support for Climate Policies: Evidence from Latin American Countries

46 Goodman (2021; CPS) Immigration Threat, Partisanship, and Democratic Citizenship: Evidence from the US, UK, and Germany

47 Hubscher et al. (2021; BJPS) Voter Responses to Fiscal Austerity

48 Incerti et al. (2021; BJPS) Hawkish Partisans: How Political Parties Shape Nationalist Conflicts in China and Japan

49 Kitagawa and Chu (2021; WP) The Impact of Political Apologies on Public Opinion

50 Klasnja et al. (2021; JEPS) When Do Voters Sanction Corrupt Politicians?

51 Magni and Reynolds (2021; JOP) Voter Preferences and the Political Underrepresentation of Minority Groups

52 Robison et al. (2021; CPS) Does Class-Based Campaigning Work? How Working Class Appeals Attract and Polarize Voters

53 Wood et al. (2021; JEPS) The Effect of Geostrategic Competition on Public Attitudes to Aid

54 Yu et al. (2021; PB) The (Null) Effects of Happiness on Affective Polarization, Conspiracy Endorsement, and Deep Fake Recognition

55 Aarslew (2022; BJPS) Why Don’t Partisans Sanction Electoral Malpractice?
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Table OA-6: Multi-site Survey Experiments

N Author (Year; Journal) Title

56 Arias and Blair (2022; JOP) Changing Tides: Public Attitudes on Climate Migration

57 Bayram and Graham (2022; JOP) Knowing How to Give

58 McGrath et al. (2022; CPS) Parliament, People or Technocrats? Explaining Mass Public Preferences on Delegation of Policymaking Authority

59 Bergquist et al. (2022; BJPS) The Politics of Intersecting Crises: The Effect of the COVID-19 Pandemic on Climate Policy Preferences

60 Brutger and Guisinger (2022; JEPS) Labor Market Volatility, Gender, and Trade Preferences

61 Carnegie and Gaikwad (2022; WP) Public Opinion on Geopolitics and Trade Theory and Evidence

62 Duch and Gimeno (2022; CPS) Collective Decision-Making and the Economic Vote

63 Frederiksen (2022; APSR) Does Competence Make Citizens Tolerate Undemocratic Behavior?

64 Jurado et al. (2022; IO) Brexit Dilemmas: Shaping Postwithdrawal Relations with a Leaving State

65 Krishnarajan and Jensen (2022; BJPS) When Is A Pledge A Pledge?

66 Madsen et al. (2022; APSR) Sovereignty, Substance, and Public Support for European Courts’ Human Rights Rulings

67 Magni (2022; AJPS) Boundaries of Solidarity: Immigrants, Economic Contributions, and Welfare Attitudes

68 Magni and Reynolds (2022; PB) The Persistence of Prejudice: Voters Strongly Penalize Candidates with HIV

69 Manekin and Mitts (2022; APSR) Effective for Whom? Ethnic Identity and Nonviolent Resistance

70 Rehmert (2022; PB) Party Elites’ Preferences in Candidates: Evidence from a Conjoint Experiment

71 Saha and Weeks (2022; PB) Ambitious Women: Gender and Voter Perceptions of Candidate Ambition

72 Shandler et al. (2022; BJPS) Cyber Terrorism and Public Support for Retaliation - A Multi-Country Survey Experiment

73 Simonsen and Bonikowski (2022; CPS) Moralizing Immigration: Political Framing, Moral Conviction, and Polarization in the United States and Denmark

74 Weinberg (2022; CPS) Feelings of Trust, Distrust and Risky Decision-Making in Political Office

75 Williams et al. (2022; APSR) The Competing Influence of Policy Content and Political Cues

76 Williamson et al. (2022; BJPS) Preaching Politics: How Politicization Undermines Religious Authority in the Middle East

77 Xu et al. (2022; JOP) Information Control and Public Support for Social Credit Systems in China

Table OA-7: Multi-site Field Experiments

N Author (Year; Journal) Title

1 Green et al. (2003; JOP) Getting out the vote in local elections: Results from six door-to-door canvassing experiments

2 Nickerson (2007; AJPS) Quality is job one: Professional and volunteer voter mobilization calls

3 Gerber and Rogers (2009; JOP) Descriptive Social Norms and Motivation to Vote: Everybody’s Voting and so Should You

4 Michelson et al. (2009; JOP) Heeding the Call: The Effect of Targeted Two-Round Phone Banks on Voter Turnout

5 Panagopoulos (2010; PB) Affect, Social Pressure and Prosocial Motivation

6 Baldwin (2013; AJPS) Why Vote with the Chief? Political Connections and Public Goods Provision in Zambia

7 Broockman (2013; AJPS) Black Politicians Are More Intrinsically Motivated to Advance Blacks’ Interests

8 Findley et al. (2013; IO) Using Field Experiments in International Relations: A Randomized Study of Anonymous Incorporation

9 Panagopoulos (2013; JOP) Extrinsic Rewards, Intrinsic Motivation and Voting

10 Gift and Gift (2015; PB) Does Politics Influence Hiring? Evidence from a Randomized Experiment

11 Nickerson (2015; JOP) Do Voter Registration Drives Increase Participation? For Whom and When?

12 Nyhan and Reifler (2015; AJPS) The Effect of Fact-Checking on Elites: A Field Experiment on US State Legislators

13 White et al. (2015; APSR) What Do I Need to Vote? Bureaucratic Discretion and Discrimination by Local Election Officials

14 Valenzuela and Michelson (2016; APSR) Turnout, Status, and Identity: Mobilizing Latinos to Vote with Group Appeals

15 Broockman and Butler (2017; AJPS) The Causal Effects of Elite Position-Taking on Voter Attitudes: Field Experiments with Elite Communication

16 Findley et al. (2017; JOP) External Validity in Parallel Global Field and Survey Experiments on Anonymous Incorporation

17 Rooij and Green (2017; PB) Radio Public Service Announcements and Voter Participation Among Native Americans

18 Grossman and Michelitch (2018; APSR) Information Dissemination, Competitive Pressure, and Politician Performance between Elections

19 Kalla and Broockman (2018; APSR) The Minimal Persuasive Effects of Campaign Contact in General Elections: Evidence from 49 Field Experiments

20 Kalla and Broockman (2020; APSR) Reducing Exclusionary Attitudes through Interpersonal Conversation: Evidence from Three Field Experiments

21 Linardi and Rudra (2020; CPS) Globalization and Willingness to Support the Poor in Developing Countries: An Experiment in India

22 Persson et al. (2020; JEPS) Does Deliberative Education Increase Civic Competence? Results from a Field Experiment

23 Choi et al. (2021; JEPS) Linguistic Assimilation Does Not Reduce Discrimination Against Immigrants: Evidence from Germany

24 Harris et al. (2021; JOP) Electoral Administration in Fledgling Democracies: Experimental Evidence from Kenya

25 Magni and Leon (2021; JEPS) Women Want an Answer! Field Experiments on Elected Officials and Gender Bias

26 Moy (2021; JEPS) Can Social Pressure Foster Responsiveness? An Open Records Field Experiment with Mayoral Offices

27 Bennion and Nickerson (2022; PB) Decreasing Hurdles and Increasing Registration Rates for College Students

28 Goerger et al. (2022; JEPS) Which Police Departments Want Reform? Barriers to Evidence-Based Policymaking

29 Lieberman and Zhou (2022; JEPS) Self-Efficacy and Citizen Engagement in Development: Experimental Evidence from Tanzania
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Table OA-8: Multi-site Lab Experiments

N Author (Year; Journal) Title

1 Aragones and Palfrey (2004; APSR) The effect of candidate quality on electoral equilibrium: An experimental study

2 Wilking (2011; PB) The Portability of Electoral Procedural Fairness: Evidence from Experimental Studies in China and the United States

3 Enos and Gidron (2016; JOP) Intergroup Behavioral Strategies as Contextually Determined: Experimental Evidence from Israel

4 Vincent et al. (2016; JEPS) The Electoral Sweet Spot in the Lab

5 Fournier et al. (2020; APSR) Negativity Biases and Political Ideology: A Comparative Test across 17 Countries

6 Blais and Vallve (2021; PB) Conformity and Individuals’ Response to Information About Aggregate Turnout

7 de la Cuesta et al. (2022; JOP) Owning It: Accountability and Citizens’ Ownership over Oil, Aid, and Taxes

D.1.2 Observational Studies

For observational studies, we review papers that use instrumental variables, regression discontinuity

design, difference-in-differences design, or natural experiment. We first searched for all articles pub-

lished in the years 2000 through 2022 (inclusive) using the following keywords: “natural experiment”,

“regression discontinuity”, “instrument”, “difference-in-difference”, and “two-way fixed effects” in Web

of Science, which returned a total of 375 articles. Similar to the steps taken for the experimental stud-

ies, a two-step approach combining GPT-labeling and experts-manual-verification. In the first step,

GPT classified a total of 62 articles as a multi-site observational study. We then manually verified the

62 articles that GPT labeled as a multi-site as well as a random selection of 50 from the remaining

articles. In this verification step, we coded a total of 22 articles as a multi-site out of the 112 articles

reviewed. Again, importantly, all studies we review below are manually verified to be multi-site obser-

vational studies. This means that the number of multi-site observational studies we report is likely the

lower bound of the true number of multi-site observational studies that exist during the time frame we

examine.

Table OA-9 displays the list of multi-site observational studies separated by the identification strate-

gies: Difference-in-Difference, Regression Discontinuity, Instrumental Variables, and Natural Experi-

ment, respectively. Note that articles may be listed more than once if multiple types of identification

strategies were implemented (e.g., Grossman et al. (2017) use both instrumental variable and difference-

in-difference approach).

Table OA-9: Multi-site Observational Studies

N Author (Year; Journal) Title

Difference-in-Differences

1 Grossman et al. (2017; JOP) Government Fragmentation and Public Goods Provision

2 Singh (2019; AJPS) Compulsory Voting and Parties’ Vote-Seeking Strategies

3 Ziller and Goodman (2020; JOP) Local Government Efficiency and Anti-immigrant Violence

4 Iversen and Rehm (2022; CPS) Information and Financialization: Credit Markets as a New Source of Inequality

5 Safarpour et al. (2022; PB) When Women Run, Voters Will Follow (Sometimes): Examining the Mobilizing Effect of Female Candidates in

the 2014 and 2018 Midterm Elections

Regression Discontinuity Design

1 Middleton and Green (2008; QJPS) Do community-based voter mobilization campaigns work even in battleground states? Evaluating the effectiveness

of MoveOn’s 2004 outreach campaign

2 Dunning and Nilekani (2013; APSR) Ethnic Quotas and Political Mobilization: Caste, Parties, and Distribution in Indian Village Councils

3 Folke et al. (2016; APSR) The Primary Effect: Preference Votes and Political Promotions

4 Eggers et al. (2018; AJPS) Regression Discontinuity Designs Based on Population Thresholds: Pitfalls and Solutions

5 Cavaille and Marshall (2019; APSR) Education and Anti-Immigration Attitudes: Evidence from Compulsory Schooling Reforms across Western Europe

6 Velez and Newman (2019; AJPS) Tuning In, Not Turning Out: Evaluating the Impact of Ethnic Television on Political Participation
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Table OA-9: Multi-site Observational Studies

N Author (Year; Journal) Title

7 Holbein and Rangel (2020; JOP) Does Voting Have Upstream and Downstream Consequences? Regression Discontinuity Tests of the Transformative

Voting Hypothesis

8 Solodoch (2021; IO) Regaining Control? The Political Impact of Policy Responses to Refugee Crises

9 Gordon and Yntiso (2022; JOP) Incentive Effects of Recall Elections: Evidence from Criminal Sentencing in California Courts

10 Iversen and Rehm (2022; CPS) Information and Financialization: Credit Markets as a New Source of Inequality

11 Olson and Stone (2022; PB) The Incumbency Advantage in Judicial Elections: Evidence from Partisan Trial Court Elections in Six US States

12 Rau (2022; CPS) Partisanship as Cause, Not Consequence, of Participation

13 Song (2022; QJPS) The Rank Effect in Multimember District Elections

Instrumental Variables

1 Daly (2014; BJPS) State Strategies in Multi-Ethnic Territories: Explaining Variation in the Former Soviet Union and Eastern Bloc

2 Grossman et al. (2017; JOP) Government Fragmentation and Public Goods Provision

Natural Experiment

1 Jupille and Leblang (2007; IO) Voting for change: Calculation, community, and Euro referendums

2 Malesky and Samphantharak (2008;

QJPS)

Predictable Corruption and Firm Investment: Evidence from a Natural Experiment and Survey of Cambodian

Entrepreneurs

3 Dassonneville et al. (2019; PB) Compulsory Voting Rules, Reluctant Voters and Ideological Proximity Voting

4 Singh (2019; AJPS) Compulsory Voting and Parties’ Vote-Seeking Strategies

5 Bateson and Weintraub (2022; JOP) The 2016 Election and America’s Standing Abroad: Quasi-Experimental Evidence of a Trump Effect

6 Iversen and Rehm (2022; CPS) Information and Financialization: Credit Markets as a New Source of Inequality

D.1.3 Other Empirical Methods

To assess the increased popularity of multi-site causal studies, we also counted published articles ap-

plying other widely-used empirical methods: conjoint experiment, text analysis, instrumental variables

(IV), regression discontinuity design (RDD), and difference-in-difference (DID). For each empirical

method, we used the following keywords: “conjoint analysis” or “conjoint experiments” for conjoint

analyses, “text as data” and “text analysis” for text analyses, “difference-in-difference” or “two-way

fixed effects” for difference-in-difference (DID), “instrumental variable” for instrumental variable (IV),

and “regression discontinuity” for regression discontinuity (RDD). For text analyses, we also included

the articles published in the above-mentioned top journals that cite Grimmer and Stewart (2013). See

Figure 1 of the main paper.

D.2 Descriptive Analyses of Multi-Site Studies

To further assess the current sampling approach in multi-site studies, we hired two independent re-

searchers to review the 133 verified multi-site experimental (111) and observational (22) studies and

code the following information:

1. The geographic unit as well as total number of study sites;

2. Use of random sampling in selecting study sites;

3. Use of purposive sampling in selecting study sites; and

4. Site-level variables considered when diversifying the site selection

In terms of the current practice of site selection, random sampling of sites is extremely rare. Among

all 133 multi-site studies we review, we found only 2 papers using random sampling. Instead of using
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random sampling, about 80% of multi-site studies rely on purposive sampling and select diverse sites

such that study sites cover heterogeneous contextual factors.

We next examine geographic unit of study sites and how many sites are involved in multi-site studies.

First, as shown in Figure OA-5-(a), large majority of the multi-site studies (69%) are implemented at

the country-level, which reflects the increased popularity of multi-country survey experiments. However,

it is also important to emphasize that multi-site causal studies are also used within a country, across

states, cities, counties, districts, and so on. SPS can be used for any geographic unit of study sites and

is equally effective for selecting multiple countries and multiple states/cities/counties/districts within

a country.

Figure OA-5-(b) shows the distribution of the number of study sites researchers select in each paper.

The median number of study sites is 3 and the 80th percentile is 6.6. In general, the number of study

sites is small in political science. This is one of the main reasons why random sampling of sites is

often infeasible and ineffective in practice. We emphasize that SPS is designed specifically for this

small-sample setting.
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E Formal Results

E.1 SPS Estimator Minimizes the Worst-Case Mean Squared Error

In this section, we clarify how SPS minimizes the worst-case mean squared error (MSE), within a large

class of weighted average estimators. We consider the following general SPS algorithm.

min(S∈{0,1}, W) λ1 ×
1

N −NS

N∑
k=1

(1− Sk)

(
1

Lg

Lg∑
`=1

(g`(Xk)−
N∑
j=1

SjWjkg`(Xj))
2

)
(OA.1)

+ λ2 ×
1

(N −NS)

N∑
j=1

N∑
k=1

WjkSj(1− Sk)
1

Lg

Lg∑
`=1

(g`(Xj)− g`(Xk))2 (OA.2)

+ λ3 ×
1

N −NS

N∑
j=1

N∑
k=1

Sj(1− Sk)W 2
jk (OA.3)

such that
N∑
k=1

Sk = NS , W ≥ 0, and
∑
j

SjWjk = 1 for all non-selected sites k with Sk = 0.

where (λ1, λ2, λ3) are tuning parameters. g(·) represents flexible transformation of site-level variables

X ∈ RL, such as higher-order interactions between site-level covariates and higher-order polynomials.

More formally, researchers can make the transformation flexible by including basis expansion and/or

kernels (relying on the theory of reproducing kernel Hilbert spaces). We use Lg to denote the dimension

of g(X) (after transformation).

In Section 4.2.2, we introduced the most basic version (λ1 = 1 and λ2 = λ3 = 0; and no transforma-

tion). As we explained there, the first part of the optimization problem (equation (OA.1)) is the most

fundamental part, which makes sure that non-selected sites can be well approximated by the weighted

average of the selected sites.

Two other parts (equations (OA.2) and (OA.3)) are helpful to improve the basic version of SPS,

while it does not change the algorithm substantively. The second part (equation (OA.2)) acts as the

penalty term for encouraging to select sites closer to non-selected sites to avoid excessive reliance on

linearity on g(X). The third part (equation (OA.3)) also acts as the penalty term for encouraging

uniform weights, which will increase efficiency of the downstream weighted average estimator. These

penalty terms are similar to common penalty terms in the synthetic control literature (e.g., Abadie and

Zhao, 2021; Ben-Michael et al., 2021; Doudchenko et al., 2021).

While we provide analytical expression for (λ1, λ2, λ3) below, we summarize guiding principles here.

When a linear model of g(X) can explain a larger amount of across-site heterogeneity, λ1 should be larger

because the balance of g(X) is crucial. When the underlying model deviates more from a linear model,

λ2 should be larger because we should select sites closer to non-selected sites to avoid excessive reliance

on linearity. Finally, when unmeasured moderators have larger effects or when the variance of the

site-specific ATEs in selected sites are expected to be larger, λ3 should be larger because it is important

to encourage uniform weights to reduce variance of the downstream weighted average estimator and

also because site selection and weights estimation should depend less on observed site-level variables.

Please see the end of Appendix for more formal expressions of (λ1, λ2, λ3).
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We consider the mean squared error (MSE), which is defined as follows.

MSE :=
1

N

N∑
k=1

E
{(

θk − θ̂Wk
)2
}

We show that the MSE is upper bounded by the following quantity with constant terms (λ1, λ2, λ3, C)

that we define below.

1

N

N∑
k=1

E
{(

θk − θ̂Wk
)2
}

≤ λ1 ×
1

N −NS

N∑
k=1

(1− Sk)

(
1

Lg

Lg∑
`=1

(g`(Xk)−
N∑
j=1

SjWjkg`(Xj))
2

)

+ λ2 ×
1

(N −NS)

N∑
j=1

N∑
k=1

WjkSj(1− Sk)
1

Lg

Lg∑
`=1

(g`(Xj)− g`(Xk))2

+ λ3 ×
1

N −NS

N∑
j=1

N∑
k=1

Sj(1− Sk)W 2
jk + C (OA.4)

Our SPS algorithm (equations (OA.1)-(OA.3)) directly minimizes this worst-case MSE over site selection

and weights estimation (S,W).

Proof. We introduce some notations to simplify presentation.

For selected sites j ∈ R, we define dj := θ̂j − θj . When researchers use an unbiased estimator of

site-specific ATEs within each site (most common in practice), E(dj) = 0. As causal studies in each

site use independent sets of data, d is independent across sites.

We will use the following decomposition. For all k ∈ {1, . . . , N},

ηk := θk − {g(Xk)>β + f(g(Xk))}

where ηk is a bias term of the partially linear working predictive model g(Xk)>β + f(g(Xk)) for site-

specific ATE θk. This is a mechanical decomposition of θk into the bias term ηk and the working

predictive model (g(Xk)>β + f(g(Xk))), so this decomposition holds without loss of generality. We

now explain each term in order. First, g(Xk)>β is a linear part of the working predictive model using

the transformation of site-level variables (g(Xk)) with unknown coefficients β (note that this coefficient

is unknown to researchers at the site-selection stage). We assume f(·) is a Lipschitz function with

Lipschitz constant ρ ≥ 0, i.e., |f(Z) − f(Z ′)| ≤ ρ||Z − Z ′||2. This Lipschitz function is a large class

of models (every function that is defined on an interval and has bounded first derivative is Lipschitz

continuous) used widely in the literature (e.g., Ben-Michael et al., 2021) and captures the deviation

from linearity. Even though we allow for very flexible transformation g(·), it might not capture all

non-linearity in observed site-level variables Xk, and this Lipschitz function f(·) captures this residual

non-linearity in Xk. Finally, the working predictive model (g(Xk)>β+f(g(Xk))) is an extremely flexible

non-linear model of observed site-level variables, but it cannot capture the influence of unobserved site-

level variables, which is captured by the bias term ηk. To allow for arbitrary bias, we do not make any

assumption about ηk. Importantly, θk is a fixed constant parameter of interest, and thus, ηk is also not

random here.
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To understand the MSE of weighted average estimators, we start by decomposing site-specific bias for

non-selected site k. Importantly, the following decomposition holds for any weighted average estimators.

θk − θ̂Wk
= θk −

∑
j∈S

Wjkθ̂j

= θk −
∑
j∈S

Wjk(θj + dj)

=

θk −∑
j∈S

Wjkθj

+
(
g(Xk)>β − g(Xk)>β

)
+

∑
j∈S

Wjkg(Xj)
>β −

∑
j∈S

Wjkg(Xj)
>β


+ (f(g(Xk))− f(g(Xk))) +

∑
j∈S

Wjkf(g(Xj))−
∑
j∈S

Wjkf(g(Xj))

−∑
j∈S

Wjkdj

=

g(Xk)−
∑
j∈S

Wjkg(Xj)

> β +

f(g(Xk))−
∑
j∈S

Wjkf(g(Xj))

+

ηk −∑
j∈S

Wjkηj

−∑
j∈S

Wjkdj

where the first line follows from the definition of a weighted average estimator, the second from the

definition of d described above, and the third from rearrangement of terms, and the final line from the

definition of ηk.

To simplify notations, we now define Gk(W) := g(Xk)−
∑

j∈SWjkg(Xj) and Fk(W) := f(g(Xk))−∑
j∈SWjkf(g(Xj)). Then, we have

E
{(

θk − θ̂Wk
)2
}

= ||Gk(W)>β||22 + ||Fk(W)||22 + ||ηk −
∑
j∈S

Wjkηj ||22 + 2Gk(W)>βFk(W)

+ 2Gk(W)>β

ηk −∑
j∈S

Wjkηj

+ 2Fk(W)

ηk −∑
j∈S

Wjkηj

+ E

(
∑
j∈S

Wjkdj)
2


where we used E(dj) = 0 and independence of d across sites.

Now we consider each term in order. We note that each bound below is not always the sharp bound

(i.e., the tightest bound). As in the literature of the synthetic control method and balancing weights,

we use bounds such that the resulting optimization problem has intuitive interpretation and is also

computationally feasible.

For the first term, using Cauchy–Schwarz inequality,

||Gk(W)>β||22 ≤ ||β||22||Gk(W)||22.

For the second term, we obtain

||Fk(W)||22 :=

f(g(Xk))−
∑
j∈S

Wjkf(g(Xj))

2

≤

ρ×∑
j∈S

Wjk||g(Xk)− g(Xj)||2

2
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≤ ρ2 ×
∑
j∈S

Wjk||g(Xk)− g(Xj)||2 max
j′∈[N ]

||g(Xk)− g(Xj′)||2

= ρ2 ×
∑
j∈S

Wjk||g(Xk)− g(Xj)||22
maxj′∈[N ] ||g(Xk)− g(Xj′)||2

||g(Xk)− g(Xj)||2

≤ ρ2 ×
maxj′∈[N ] ||g(Xk)− g(Xj′)||2
minj′∈[N ] ||g(Xk)− g(Xj′)||2

×
∑
j∈S

Wjk||g(Xk)− g(Xj)||22

where we use [N ] := {1, . . . , N}. The first line follows from the definition and the second from the

property of the Lipschitz function f(·) with Lipschitz constant ρ ≥ 0. The third follows from
∑

j′∈SWj′k

being the weighted average, the fourth line from adding ||g(Xk)−g(Xj)||2, and the final line from using

the minimum of the denominator.

For the third term, we obtain

||ηk −
∑
j∈S

Wjkηj ||22 = η2
k − 2ηk

∑
j∈S

Wjkηj +
∑
j∈S

W 2
jkη

2
j +

∑
j∈S

Wjkηj
∑

j′∈S,j′ 6=j

Wj′kηj′

≤ η2
∑
j∈S

W 2
jk + 4η2

where we use η to denote the unknown upper bound of |ηk| for k ∈ [N ].

For the fifth term, we obtain

2Gk(W)>βFk(W) ≤ 2× ||Gk(W)>β||2 × ||Fk(W)||2
≤ 2× ||Gk(W)||2 × ||β||2 × ρ× max

j′∈[N ]
||g(Xk)− g(Xj′)||2

≤ 2× ||Gk(W)||22 × ||β||2 × ρ× max
j′∈[N ]

||g(Xk)− g(Xj′)||2

where the first and second lines from Hölder’s inequality, Cauchy–Schwarz inequality and the bound for

||Fk(W)||2 derived above. The final line adds multiplication by ||Gk(W)||2, which can be made greater

than 1 (as long as ||Gk(W)||2 > 0) by appropriately defining the scale of g(X) and β. This final step is

added for simpler interpretation because this bound can be combined together with the bound for the

first term.

For the sixth term, we obtain

2Gk(W)>β

ηk −∑
j∈S

Wjkηj

 ≤ 2× ||Gk(W)>β||2 × ||ηk −
∑
j∈S

Wjkηj ||2

≤ 2× ||Gk(W)||2 × ||β||2 × 2η

≤ 2× ||Gk(W)||22 × ||β||2 × 2η

where the first line from Hölder’s inequality and the second from Cauchy–Schwarz inequality and the

bound for |ηk|. The final line again adds multiplication by ||Gk(W)||2, which can be made greater than

1 (as long as ||Gk(W)||2 > 0) by appropriately defining the scale of g(X) and β. This final step is

added for simpler interpretation because this bound can be combined together with the bound for the

first term and the fifth term.
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For the seventh term, we obtain

2Fk(W)

ηk −∑
j∈S

Wjkηj

 ≤ 2× ||Fk(W)||2 × ||ηk −
∑
j∈S

Wjkηj ||2

≤ 2× ||Fk(W)||2 × 2η

≤ 4η × ρ×
∑
j∈S

Wjk||g(Xk)− g(Xj)||2

≤ 4η × ρ×
∑
j∈S

Wjk||g(Xk)− g(Xj)||22

where the first line from Hölder’s inequality, the second from the bound for |ηk|, and the third from the

bound for ||Fk(W)||2 derived above. The final line adds multiplication by ||g(Xk) − g(Xj)||2, which

can be made greater than 1 (as long as ||g(Xk) − g(Xj)||2 > 0) by appropriately defining the scale of

g(X) and β. This final step is added for simpler interpretation because this bound can be combined

together with the bound for the second term.

For the eighth term,

E

(
∑
j∈S

Wjkdj)
2

 =
∑
j∈S

W 2
jkE(d2

j ) =
∑
j∈S

W 2
jkVar(θ̂j) ≤ max

j′∈[N ]
Var(θ̂j′)

∑
j∈S

W 2
jk

where Var(θ̂j) is the variance of the site-specific ATE estimator where site j is a selected study site.

The first line follows from E(djd
′
j) = 0 when j 6= j′, the second from the definition of variance, and the

final line follows from the definition of the maximum. Importantly, Var(θ̂j) is unknown to researchers

at the site-selection stage.

Therefore, taken all together, for non-selected site k,

E
{(

θk − θ̂Wk
)2
}

≤ λ1k × ||Gk(W)||22 + λ2k ×
∑
j∈S

Wjk||g(Xk)− g(Xj)||22 + λ3k ×
∑
j∈S

W 2
jk + 4η2

where

λ1k := ||β||2 ×
(
||β||2 + 2ρ× max

j′∈[N ]
||g(Xk)− g(Xj′∈[N ])||2 + 4η

)
λ2k := ρ2 ×

maxj′ ||g(Xk)− g(Xj′)||2
minj′ ||g(Xk)− g(Xj′)||2

+ 4ρη

λ3k := η2 + max
j′∈[N ]

Var(θ̂j′).

Finally, we take the average of the MSE over all sites.

1

N

N∑
k=1

E
{(

θk − θ̂Wk
)2
}

=
1

N

∑
k∈R

E
{(

θk − θ̂Wk
)2
}

+
1

N

∑
j∈S

E
{(

θj − θ̂j
)2
}
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≤ λ1 ×
1

N

∑
k∈R

1

Lg
||Gk(W)||22 + λ2 ×

1

N

∑
k∈R

∑
j∈S

Wjk
1

Lg
||g(Xk)− g(Xj)||22 + λ3 ×

1

N

∑
k∈R

∑
j∈S

W 2
jk +

NS

N
4η2

+
1

N

∑
j∈S

E(d2
j )

= λ1 ×
1

N −NS

N∑
k=1

(1− Sk)

(
1

Lg

Lg∑
`=1

(g`(Xk)−
N∑
j=1

SjWjkg`(Xj))
2

)

+ λ2 ×
1

N −NS

N∑
j=1

N∑
k=1

WjkSj(1− Sk)
1

Lg

Lg∑
`=1

(g`(Xj)− g`(Xk))2

+ λ3 ×
1

N −NS

N∑
j=1

N∑
k=1

Sj(1− Sk)W 2
jk +

NS

N
4η2 +

NS

N
max
j′∈[N ]

Var(θ̂j′)

where

λ1 :=
N −NS

N
× Lg × ||β||2 ×

(
||β||2 + 2ρ×max

j′,k
||g(Xk)− g(Xj′)||2 + 4η

)
λ2 :=

N −NS

N
×
(
Lg × ρ2 × max

k∈[N ]

maxj′∈[N ] ||g(Xk)− g(Xj′)||2
minj′∈[N ] ||g(Xk)− g(Xj′)||2

+ 4ρη

)
λ3 :=

N −NS

N
×
(
η2 + max

j′∈[N ]
Var(θ̂j′)

)
.

When we set C = NS
N (4η2 + maxj′∈[N ] Var(θ̂j′)), this proves the proposed bound (equation (OA.4)).

This worst-case MSE and analytical expression of (λ1, λ2, λ3) provide important insights. First,

when the linearity part g(Xk)>β explains a larger amount of across-site heterogeneity, ||β||2 is larger,

which leads to a larger value of λ1. This will prioritize the first term in the objective function (equa-

tion (OA.1)) such that observed site-level variables of non-selected sites are well approximated by those

of selected sites. Second, when the underlying model deviates more from a linear model, the residual

non-linearity modeled by the Lipschitz function f(·) is more important and ρ is larger, which leads to

a larger value of λ2 (λ2 includes the quadratic term of ρ, while λ1 only has the linear term). This will

prioritize the second term in the objective function (equation (OA.2)) such that we select sites closer

to non-selected sites to avoid excessive reliance on linearity.

Third, when variance of the site-specific ATE in selected sites are large (i.e., Var(θ̂j) is larger), λ3

will be larger and the SPS will prioritize the third term the objective function (equation (OA.3)) such

that weights are closer to uniform and the downstream weighted average estimator has smaller variance.

Finally, when unobserved moderators have larger effects (i.e., η is larger), λ3 will be larger (λ3 includes

the quadratic term of η, while λ1 and λ2 only have the linear term) and the SPS will prioritize the

third term in the objective function (equation (OA.3)) such that site selection and weights estimation

depend less on observed site-level variables. 2

E.2 Solving SPS Optimization Problem

In this section, we discuss how to solve the SPS optimization problem.

min(S∈{0,1}, W) λ1 ×
1

N −NS

N∑
k=1

(1− Sk)

 1

Lg

Lg∑
`=1

g`(Xk)−
N∑
j=1

SjWjkg`(Xj)

2
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+ λ2 ×
1

(N −NS)

N∑
j=1

N∑
k=1

WjkSj(1− Sk)
1

Lg

Lg∑
`=1

(g`(Xj)− g`(Xk))2

+ λ3 ×
1

N −NS

N∑
j=1

N∑
k=1

Sj(1− Sk)W 2
jk

such that
N∑
k=1

Sk = NS , W ≥ 0, and
∑
j

SjWjk = 1 for all non-selected sites k with Sk = 0.

Researchers can also add additional constraints to this problem.

This is a mixed integer programming problem, and we follow techniques in Doudchenko et al. (2021)

to make the problem quadratic. In particular, we will use the following two auxiliary variables.

Qjk = SjWjk

Zk` = (1− Sk)g`(Xk)−
N∑
j=1

Qjkg`(Xj)

Using these auxiliary variables, we can rewrite the optimization problem as follows.

min(S∈{0,1}, W,Q,Z) λ1 ×
1

(N −NS)Lg

N∑
k=1

Lg∑
`=1

Z2
k` (OA.5)

+ λ2 ×
1

(N −NS)

N∑
j=1

N∑
k=1

Qjk
1

Lg

Lg∑
`=1

(g`(Xj)− g`(Xk))2, (OA.6)

+ λ3 ×
1

N −NS

N∑
j=1

N∑
k=1

Q2
jk (OA.7)

such that
N∑
k=1

Sk = NS , W ≥ 0,
N∑
j=1

Qjk = 1− Sk,Wjk ≤ 1− Sk, (OA.8)

Zk` = (1− Sk)g`(Xk)−
N∑
j=1

Qjkg`(Xj) (OA.9)

0 ≤ Qjk ≤ Sj , and Wjk − (1− Sj) ≤ Qjk ≤Wjk (OA.10)

This is a mixed integer programming problem where the objective function is quadratic and constraints

are linear, so any academic and commercial solvers (like CVX and Gurobi) can solve this efficiently.

Proof. We prove this equivalence step by step. We follow techniques in Doudchenko et al. (2021). As

for the first part of the objective function (equation (OA.5)), we have

Zk` = (1− Sk)g`(Xk)−
N∑
j=1

Qjkg`(Xj)

= (1− Sk)g`(Xk)−
N∑
j=1

SjWjkg`(Xj)
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= (1− Sk)g`(Xk)− (1− Sk)
N∑
j=1

SjWjkg`(Xj)

= (1− Sk)(g`(Xk)−
N∑
j=1

SjWjkg`(Xj)),

where the first and second lines follow from definitions, the third from the fact that Wjk = 0 when

Sk = 1, and the last line from rearrangement. Therefore,

Z2
k` = (1− Sk)(g`(Xk)−

N∑
j=1

SjWjkg`(Xj))
2,

given that (1− Sk)2 = (1− Sk).

As for the second part of the objective function (equation (OA.6)), we have

WjkSj(1− Sk) = SjWjk = Qjk.

because Wjk = 0 when Sk = 1 and we use the definition of Qjk

As for the third part of the objective function (equation (OA.7)), we have

Sj(1− Sk)W 2
jk = SjW

2
jk = Q2

jk,

because Wjk = 0 when Sk = 1 and S2
j = Sj .

As for constraints, the first two constraints are the same as before.
∑N

j=1Qjk = 1−Sk is equivalent

to
∑

j SjWjk = 1 for all non-selected sites k with Sk = 0. Wjk ≤ 1−Sk makes sure that Wjk = 0 when

Sk = 1. Equation (OA.9) defines Zk`. Equation (OA.10) defines Qjk only using linear rules. When

Sj = 1, equation (OA.10) implies that 0 ≤ Qjk ≤ 1 and Wjk ≤ Qjk ≤ Wjk, and thus, Qjk = Wjk.

Instead, when Sj = 0, equation (OA.10) implies that 0 ≤ Qjk ≤ 0 and Wjk− 1 ≤ Qjk ≤Wjk, and thus,

Qjk = 0. When we combine both cases, equation (OA.10) is equivalent to Qjk = SjWjk. This completes

the proof. 2

E.3 Extending SPS to Accommodate More Domain Knowledge

Researchers can also incorporate various other domain knowledge to SPS. None of the following exten-

sions fundamentally change the theoretical properties of SPS, but it improves flexibility.

First, as we analyzed formally in equation (OA.1), users can incorporate not only Xk themselves but

also any flexible functions of site-level variables g(Xk), e.g., interaction between GDP and population

size and higher order terms like squared population size (Population2), to capture nonlinearity in the

data.

Second, researchers can also incorporate varying importance weights. For example, researchers can

extend equations (OA.1) and (OA.2) as follows.

1

N −NS

N∑
k=1

(1− Sk)

(
1

Lg

Lg∑
`=1

VW` × (g`(Xk)−
N∑
j=1

SjWjkg`(Xj))
2

)
1

(N −NS)

N∑
j=1

N∑
k=1

WjkSj(1− Sk)
1

Lg

Lg∑
`=1

VW`(g`(Xj)− g`(Xk))2
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where VW` is the importance weight for the `th site-level variable. As in the standard synthetic control

method, researchers might choose these weights based on predictive power.

Third, users can also ensure that selected sites are geographically diverse and distant enough from

each other. For example, if users want to ensure the minimum distance (e.g., 20 km) between each

selected site, researchers can add the following constraint to SPS. For each pair (j, k) with SjSk = 1,

we add

distancejk ≥ minimum distance.

If users just want to encourage geographically diverse sites, they can add the following term to the

objective function.

−
N∑
j=1

N∑
k=1

SjSk × distancejk

Fourth, researchers can incorporate the budget constraint and differential costs of each site by adding

the following to SPS.

N∑
j=1

Sjcostj ≤ Total Budget, (OA.11)

where costj captures the cost of conducting a causal study in site j. This will include different types of

costs, such as the initial cost of setting up experiments, hiring local partners, recruting subjects, and

so on. This calculation is often easier when considering multi-country survey experiments and online

survey firms give researchers costs per subject in each country.

Fifth, researchers can also incorporate differential sample size in each site. In particular, differential

sample size in each site affects the expected variance in each site and thus we can naturally incorporate

it into equation (OA.3).

λ3 ×
1

N −NS

N∑
j=1

N∑
k=1

1

nj
Sj(1− Sk)W 2

jk

where nj is the sample size in site j. This is because the third term (equation (OA.3)) is related

to the variance of the site-specific ATE estimator Var(θ̂j), which is a function of 1/nj . See equa-

tion (OA.5). Differential sample size also naturally affects the cost in site j, which is incorporated in

equation (OA.11).

E.4 SPS Estimators

E.4.1 Weighted Average Estimator

We show that the SPS estimator is a weighted average of the site-specific ATE estimators in selected

sites.

Proof. First, we have

θ̂AS :=
1

N

(∑
j∈S

θ̂j +
∑
k∈R

θ̂Wk
)

=
1

N

(∑
j∈S

θ̂j +
∑
k∈R

∑
j∈S

Ŵjkθ̂j
)
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=
1

N

∑
j∈S

(1 +
∑
k∈R

Ŵjk)θ̂j ,

where the first and second equalities follow from the definition of the SPS estimators, the third equality

follows from from rearrangement of terms.

Therefore, when we define W̃j = (1 +
∑

k∈R Ŵjk)/N, we have

θ̂AS =
∑
j∈S

W̃j θ̂j where
∑
j∈S

W̃j = 1.

E.4.2 Variance Estimation

Now we consider variance estimation for the averarge-site ATE estimator. We consider both site-level

and unit-level error terms. In particular, without loss of generality, we define

θ̂k = θk + δk + εk

where θ̂k is an estimate of the site-specific ATE at site k, θk is a constant parameter that represents the

true site-specific ATE in site k, δk captures a site-level error term, and, εk captures the within-site error

term, which is the within-site average of unit-level error terms. We will analyze δk and εk as random

variables.

Importantly, we don’t assume θk comes from some unknown super-population. θk is a fixed constant

parameter that represents the true site-specific ATE in site k. εk is the within-site error term, which is

the within-site average of unit-level error terms. Thus, importantly, εk decreases as sample size within

site k increases. When an unbiased estimator is used in site k, E(εk) = 0. Because causal studies in

each site use independent sets of data, ε is independent across sites without loss of generality.

δk captures the non-systematic site-level error term that does not vanish even when sample size at

site k is infinite. For example, this captures the weather of days when a study is conducted in site k, and

random variations of treatment implementation. Even if a study in site k has infinite sample size, an

estimate of the site-specific ATE will not be exactly the same if we hypothetically re-run a study many

times due to such random site-level variations. δk caputures this inherent site-level non-systematic

random variation, whereas systematic heterogeneity across sites is captured by θk. Thus, without loss

of generality, E(δk) = 0. We assume site-level error term δ is independent across sites.

Given this basic setup, we can write the variance of the SPS estimator as follows.

Var(θ̂AS) =
∑
j∈S

W̃ 2
j Var(θ̂j)

=
∑
j∈S

W̃ 2
j (σ2

j + τ2)

where σ2
j = Var(εj), which is the within-site variance of the site-specific ATE estimator, and τ2 = Var(δ),

which is the across-site variance. Recall that S is a set of selected study sites. Var(·) is defined as the

variance over random variables ε and δ. Importantly, as in typical experimental analysis, we consider

randomness conditional on the design stage (i.e., observed covariates X) and thus, W̃ are treated as

constants.
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We can easily obtain an estimate of the within-site variance σ2
k for site k using an estimated variance

of the site-specific ATE estimator in site k.

We now turn to estimation of the across-site variance τ2. We will show below the following variance

estimator is a conservative variance estimator, i.e., E(τ̂2) ≥ τ2.

τ̂2 :=

∑
k∈S ê

2
k − (

∑
k∈S σ̂

2
k +

∑
k∈S

∑
j∈Sk W

2
jkσ̂

2
j )∑

k∈S(1 +
∑

j∈Sk W
2
jk)

,

where

êk := θ̂k −
∑
j∈Sk

W jkθ̂j ,

σ̂2
k is an (asymptotically) unbiased estimate of the within-site variance σ2

k. Sk is a set of selected sites

after removing site k. W jk is the SPS weight we estimate to approximate site k only using sites in Sk.
Importantly, this variance estimator does not assume that our SPS estimator is unbiased. This variance

estimator is valid even when the SPS estimator is biased.

Taken together,

V̂ar(θ̂AS) =
∑
j∈S

W̃ 2
j (σ̂2

j + τ̂2).

Proof. We now prove the property of τ̂2. We start with the decomposition of êk.

êk := θ̂k −
∑
j∈Sk

W jkθ̂j

= (θk −
∑
j∈Sk

W jkθj) + (δk −
∑
j∈Sk

W jkδj) + (εk −
∑
j∈Sk

W jkεj),

where (θk −
∑

j∈Sk W jkθj) is a fixed constant and does not contain randomness. We will use bk to

denote this unknown bias term. Therefore,

E(ê2
k) = Var(êk) + E(êk)2

=

Var(δk) +
∑
j∈Sk

W
2
jkVar(δj)

+

Var(εk) +
∑
j∈Sk

W
2
jkVar(εj)

+ b2k

= (1 +
∑
j∈Sk

W
2
jk)τ2 + σ2

k +
∑
j∈Sk

W
2
jkσ

2
j + b2k

where the first equality follows from the definition of variance, the second from the decomposition

above, and the third from definitions of τ2 and σ2
k.

Averaging over sites, we obtain

1

NS

∑
k∈S

E(ê2
k) = τ2 × 1

NS

∑
k∈S

(1 +
∑
j∈Sk

W
2
jk) +

1

NS

∑
k∈S

σ2
k +

1

NS

∑
k∈S

∑
j∈Sk

W
2
jkσ

2
j +

1

NS

∑
k∈S

b2k.

Rearranging the term, we have

τ2 =

∑
k∈S E(ê2

k)− (
∑

k∈S σ
2
k +

∑
k∈S

∑
j∈Sk W

2
jkσ

2
j )−

∑
k∈S b

2
k∑

k∈S(1 +
∑

j∈Sk W
2
jk)

.
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We will replace E(ê2
k) with an unbiased estimator ê2

k, and we will replace σ2
k, and σ2

j with (asymptoti-

cally) unbiased estimators σ̂2
k, and σ̂2

j . Importantly,
∑

k∈S b
2
k is unknown and unestimable, but we know

it is equal to or greater than zero
∑

k∈S b
2
k ≥ 0.

Therefore,

E(τ̂2) =

∑
k∈S E(ê2

k)− (
∑

k∈S E(σ̂2
k) +

∑
k∈S

∑
j∈Sk W

2
jkE(σ̂2

j ))∑
k∈S(1 +

∑
j∈Sk W

2
jk)

=

∑
k∈S E(ê2

k)− (
∑

k∈S σ
2
k +

∑
k∈S

∑
j∈Sk W

2
jkσ

2
j )∑

k∈S(1 +
∑

j∈Sk W
2
jk)

≥
∑

k∈S E(ê2
k)− (

∑
k∈S σ

2
k +

∑
k∈S

∑
j∈Sk W

2
jkσ

2
j )−

∑
k∈S b

2
k∑

k∈S(1 +
∑

j∈Sk W
2
jk)

= τ2.

Importantly, this variance estimator does not assume the SPS estimator is unbiased. When the SPS

estimator is indeed unbiased (i.e., bk = 0), our variance estimator is also unbiased. However, even when

the SPS estimator is biased, our variance estimator is guaranteed to be conservative. 2

E.4.3 Inference

To make inference, we have to handle site-level error terms and within-site error terms. First, with

large-sample approximation, we can use the central limit theorem to prove that

θ̂k ∼ N (θ∗k, σ
2
k),

where θ∗k = θk + δk.

However, as for site-level randomness, because the number of study sites is often small in political

science and other social science fields, unfortunately, we cannot use large sample approximation. In-

stead, we follow the standard literature of meta-analysis (DerSimonian and Laird, 1986) and make a

distributional assumption. In particular, we assume

θ∗k ∼ N (θk, τ
2).

Importantly, this is distinct from a random-effect meta-analysis model in a fundamental way: the mean

θk is a constant site-specific ATE, and we don’t assume any global superpopulation of sites. This is

also different from a fixed-effect meta-analysis model in that we explicitly take into account across-site

heterogeneity.

Given this normal assumption, we obtain

θ̂k ∼ N (θk, σ
2
k + τ2),

and thus,

θ̂AS ∼ N (
∑
j∈S

W̃jθj ,Var(θ̂AS)).

In practice, we use the proposed conservative variance estimator V̂ar(θ̂AS) to obtain conservative con-

fidence intervals and p-values.
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E.5 Connections to and Differences from Meta-Analysis Estimators

The proposed SPS estimator is strongly connected to typical meta-analysis estimators. The two most

popular estimators in the social sciences — fixed effect and random effect meta-analysis estimators

— are both weighted average estimators (e.g., Gerber and Green, 2012; Dunning et al., 2019). Thus,

for those who have used meta-analysis estimators to analyze multi-site experiments and multi-context

observational studies, applying the proposed method does not introduce additional methodological or

computational complications.

However, our method differs from the typical meta-analysis estimators in weight construction in a

fundamental way. One of the main challenges of typical meta-analysis estimators is that they assume

across-site differences in the ATEs are zero or random, and, thus, weights used in such meta-analysis

estimators do not take into account systematic differences across sites. As a result, these weights are

appropriate only when sites are randomly sampled from a population of sites, which is rarely the case

in social science applications, as we show in our literature review. In contrast, our SPS estimator

explicitly takes into account site-level differences in terms of user-specified covariates X, and weights

are estimated such that covariates of non-selected sites are well approximated by the weighted average of

covariates of selected sites. Thus, our SPS estimator allows researchers to take into account systematic

differences across sites, while using a familiar weighted average estimator.

Note that meta-regression is an alternative popular meta-analysis estimator to take into account

systematic differences across sites. We discuss its relationship to SPS in Section 7.4.

F Simulation Study

In this section, we provide a simulation study to investigate the finite sample performance of SPS.

Simulation Design. We use data from Naumann et al. (2018) to mimic the real-world data generating

process. In particular, we regress the site-specific ATEs in 15 European countries on 5 key site-level

variables (GDP, Size of Immigration Population, Unemployment Rate, Mean Age, and General Support

level for Immigrants) and squared terms of GDP and General Support level for Immigrants. We then

use the estimated coefficients as the true coefficients for the simulation study. In this way, we can design

simulation studies similar to the real-world application, while we can control several key parameters to

investigate the properties of SPS.

We change two key parameters. (1) The number of study sites we select, NS ∈ {3, 6, 9}. These

numbers cover from small to moderate and large multi-site studies in political science (see Appendix D).

(2) The number of covariates we include in SPS, L ∈ {3, 4, 5, 7, 9, 12, 15, 20, 25, 30}. Importantly, the

number of relevant site-level variables is 5. By changing the number of variables we include in SPS, we

can explore both settings where users miss relevant variables, i.e., unobserved site-level variables (when

L ∈ {3, 4}) and settings where users include irrelevant variable (when L > 5).

We then compute the root mean squared error (RMSE) of the Average-Site ATE estimator. We

compare SPS against random sampling of sites, which is used here as a theoretical benchmark, even

though random sampling of sites is often infeasible in practice.

Results. Figure OA-6 shows the results. First, when the number of study sites is within a range of

political science studies, SPS achieves lower RMSE than that of random sampling, denoted by the red
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dotted lines in each panel. As known in the literature, when the number of study sites is small, random

sampling of sites has too large standard errors and is unstable, while it is unbiased. This gain by SPS is

especially large when the number of study sites is small (NS = 3). Second, RMSE of SPS is the lowest

when we include all relevant variables but we do not include irrelevant variable (L = 5). RMSE increases

when we include irrelevant variables (when L > 5), while its increase is relatively moderate. This is

because SPS decreases the diversity in key site-level variables to improve the diversity in irrelevant

variables. Therefore, we recommend against a kitchen sink approach of including too many irrelevant

variables. Finally, SPS has relatively low RMSE even when users cannot include all relevant variables

and there are unmeasured moderators (when L < 5). Even when users miss some key site level variables,

RMSE of SPS is still lower than RMSE of random sampling approach. The SPS algorithm can reduce

RMSE further if users can include more relevant site-level variables, but unobserved moderators do not

invalidate the use of SPS.
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Figure OA-6: Simulation Results for SPS. Note: Blue lines represent RMSE of SPS, while the red
dotted lines represent RMSE of random sampling.
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